Loading…

Weak Factorization of Hardy Spaces in the Bessel Setting

We provide the weak factorization of the Hardy spaces H p (ℝ + , dm λ ) in the Bessel setting, for p ∈ ( 2 λ + 1 2 λ + 2 , 1 ] . As a corollary we obtain a characterization of the boundedness of the commutator [ b , R Δ λ ] from L q (ℝ + , dm λ ) to L r (ℝ + , dm λ ) when b ∈ Lip α (ℝ + , dm λ ) pro...

Full description

Saved in:
Bibliographic Details
Published in:Analysis mathematica (Budapest) 2019-06, Vol.45 (2), p.391-411
Main Authors: Oliver, R., Wick, B. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-af792885be04ae99c64110dec70b760971b046b4f3ebcf615c0a4e9409f1e9ec3
container_end_page 411
container_issue 2
container_start_page 391
container_title Analysis mathematica (Budapest)
container_volume 45
creator Oliver, R.
Wick, B. D.
description We provide the weak factorization of the Hardy spaces H p (ℝ + , dm λ ) in the Bessel setting, for p ∈ ( 2 λ + 1 2 λ + 2 , 1 ] . As a corollary we obtain a characterization of the boundedness of the commutator [ b , R Δ λ ] from L q (ℝ + , dm λ ) to L r (ℝ + , dm λ ) when b ∈ Lip α (ℝ + , dm λ ) provided that α = 1 q − 1 r . The results are an adaptation and modification of the work of Duong, Li, Yang, and the second named author, which only considered the case of p = 1, which in turn are based on modifications and adaptations of work by Uchiyama.
doi_str_mv 10.1007/s10476-018-0610-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225210717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225210717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-af792885be04ae99c64110dec70b760971b046b4f3ebcf615c0a4e9409f1e9ec3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQRy0EEqXwAdgsMRvunMR_RqgoRarEUBBsluNeSkpJip0O5dOTKkhMTLe89zvpMXaJcI0A-iYh5FoJQCNAIYjiiI2wMEZInb0dsxFglonMFPKUnaW0BgCrTDZi5pX8B5_60LWx_vZd3Ta8rfjMx-WeL7Y-UOJ1w7t34neUEm34grqublbn7KTym0QXv3fMXqb3z5OZmD89PE5u5yJIZTrhK22lMUVJkHuyNqgcEZYUNJRagdVYQq7KvMqoDJXCIoDPyeZgKyRLIRuzq2F3G9uvHaXOrdtdbPqXTkpZSASNuqdwoEJsU4pUuW2sP33cOwR3COSGQK4P5A6BXNE7cnBSzzYrin_L_0s_N09m7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225210717</pqid></control><display><type>article</type><title>Weak Factorization of Hardy Spaces in the Bessel Setting</title><source>Springer Nature</source><creator>Oliver, R. ; Wick, B. D.</creator><creatorcontrib>Oliver, R. ; Wick, B. D.</creatorcontrib><description>We provide the weak factorization of the Hardy spaces H p (ℝ + , dm λ ) in the Bessel setting, for p ∈ ( 2 λ + 1 2 λ + 2 , 1 ] . As a corollary we obtain a characterization of the boundedness of the commutator [ b , R Δ λ ] from L q (ℝ + , dm λ ) to L r (ℝ + , dm λ ) when b ∈ Lip α (ℝ + , dm λ ) provided that α = 1 q − 1 r . The results are an adaptation and modification of the work of Duong, Li, Yang, and the second named author, which only considered the case of p = 1, which in turn are based on modifications and adaptations of work by Uchiyama.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-018-0610-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Commutators ; Factorization ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2019-06, Vol.45 (2), p.391-411</ispartof><rights>Akadémiai Kiadó, Budapest 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-af792885be04ae99c64110dec70b760971b046b4f3ebcf615c0a4e9409f1e9ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oliver, R.</creatorcontrib><creatorcontrib>Wick, B. D.</creatorcontrib><title>Weak Factorization of Hardy Spaces in the Bessel Setting</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>We provide the weak factorization of the Hardy spaces H p (ℝ + , dm λ ) in the Bessel setting, for p ∈ ( 2 λ + 1 2 λ + 2 , 1 ] . As a corollary we obtain a characterization of the boundedness of the commutator [ b , R Δ λ ] from L q (ℝ + , dm λ ) to L r (ℝ + , dm λ ) when b ∈ Lip α (ℝ + , dm λ ) provided that α = 1 q − 1 r . The results are an adaptation and modification of the work of Duong, Li, Yang, and the second named author, which only considered the case of p = 1, which in turn are based on modifications and adaptations of work by Uchiyama.</description><subject>Analysis</subject><subject>Commutators</subject><subject>Factorization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQRy0EEqXwAdgsMRvunMR_RqgoRarEUBBsluNeSkpJip0O5dOTKkhMTLe89zvpMXaJcI0A-iYh5FoJQCNAIYjiiI2wMEZInb0dsxFglonMFPKUnaW0BgCrTDZi5pX8B5_60LWx_vZd3Ta8rfjMx-WeL7Y-UOJ1w7t34neUEm34grqublbn7KTym0QXv3fMXqb3z5OZmD89PE5u5yJIZTrhK22lMUVJkHuyNqgcEZYUNJRagdVYQq7KvMqoDJXCIoDPyeZgKyRLIRuzq2F3G9uvHaXOrdtdbPqXTkpZSASNuqdwoEJsU4pUuW2sP33cOwR3COSGQK4P5A6BXNE7cnBSzzYrin_L_0s_N09m7Q</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Oliver, R.</creator><creator>Wick, B. D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Weak Factorization of Hardy Spaces in the Bessel Setting</title><author>Oliver, R. ; Wick, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-af792885be04ae99c64110dec70b760971b046b4f3ebcf615c0a4e9409f1e9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Commutators</topic><topic>Factorization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, R.</creatorcontrib><creatorcontrib>Wick, B. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, R.</au><au>Wick, B. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Factorization of Hardy Spaces in the Bessel Setting</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>45</volume><issue>2</issue><spage>391</spage><epage>411</epage><pages>391-411</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We provide the weak factorization of the Hardy spaces H p (ℝ + , dm λ ) in the Bessel setting, for p ∈ ( 2 λ + 1 2 λ + 2 , 1 ] . As a corollary we obtain a characterization of the boundedness of the commutator [ b , R Δ λ ] from L q (ℝ + , dm λ ) to L r (ℝ + , dm λ ) when b ∈ Lip α (ℝ + , dm λ ) provided that α = 1 q − 1 r . The results are an adaptation and modification of the work of Duong, Li, Yang, and the second named author, which only considered the case of p = 1, which in turn are based on modifications and adaptations of work by Uchiyama.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-018-0610-5</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2019-06, Vol.45 (2), p.391-411
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2225210717
source Springer Nature
subjects Analysis
Commutators
Factorization
Mathematics
Mathematics and Statistics
title Weak Factorization of Hardy Spaces in the Bessel Setting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Factorization%20of%20Hardy%20Spaces%20in%20the%20Bessel%20Setting&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Oliver,%20R.&rft.date=2019-06-01&rft.volume=45&rft.issue=2&rft.spage=391&rft.epage=411&rft.pages=391-411&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-018-0610-5&rft_dat=%3Cproquest_cross%3E2225210717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-af792885be04ae99c64110dec70b760971b046b4f3ebcf615c0a4e9409f1e9ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225210717&rft_id=info:pmid/&rfr_iscdi=true