Loading…
Resistance matrices of graphs with matrix weights
The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size....
Saved in:
Published in: | Linear algebra and its applications 2019-06, Vol.571, p.41-57 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783 |
container_end_page | 57 |
container_issue | |
container_start_page | 41 |
container_title | Linear algebra and its applications |
container_volume | 571 |
creator | Atik, Fouzul Bapat, R.B. Rajesh Kannan, M. |
description | The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree. |
doi_str_mv | 10.1016/j.laa.2019.02.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225230833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519300667</els_id><sourcerecordid>2225230833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC511nks0mwZMUv6AgiJ5DNs22WdpuTVKr_96U9expYHifd4aHkGuECgGb275aG1NRQFUBrQDxhExQClai5M0pmQDQumRC8XNyEWMPALUAOiH45qKPyWytKzYmBW9dLIauWAazW8Xi4NNq3H8XB-eXqxQvyVln1tFd_c0p-Xh8eJ89l_PXp5fZ_by0rJGpRGt4Z5TiKNFS2jHVKCkctg3nVLlOykULvLW1YSioYLK1bc0EB2haKYRkU3Iz9u7C8Ll3Mel-2IdtPqkppZwykIzlFI4pG4YYg-v0LviNCT8aQR_N6F5nM_poRgPV2Uxm7kbG5fe_vAs6Wu-ygYUPzia9GPw_9C-xVWlx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225230833</pqid></control><display><type>article</type><title>Resistance matrices of graphs with matrix weights</title><source>ScienceDirect Freedom Collection</source><creator>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</creator><creatorcontrib>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</creatorcontrib><description>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.02.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Apexes ; Eigenvalues ; Inertia ; Inverse ; Laplacian matrix ; Linear algebra ; Mathematical analysis ; Matrix methods ; Matrix weighted graph ; Moore–Penrose inverse ; Resistance matrix</subject><ispartof>Linear algebra and its applications, 2019-06, Vol.571, p.41-57</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</citedby><cites>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</cites><orcidid>0000-0001-8038-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Atik, Fouzul</creatorcontrib><creatorcontrib>Bapat, R.B.</creatorcontrib><creatorcontrib>Rajesh Kannan, M.</creatorcontrib><title>Resistance matrices of graphs with matrix weights</title><title>Linear algebra and its applications</title><description>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</description><subject>Apexes</subject><subject>Eigenvalues</subject><subject>Inertia</subject><subject>Inverse</subject><subject>Laplacian matrix</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Matrix weighted graph</subject><subject>Moore–Penrose inverse</subject><subject>Resistance matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC511nks0mwZMUv6AgiJ5DNs22WdpuTVKr_96U9expYHifd4aHkGuECgGb275aG1NRQFUBrQDxhExQClai5M0pmQDQumRC8XNyEWMPALUAOiH45qKPyWytKzYmBW9dLIauWAazW8Xi4NNq3H8XB-eXqxQvyVln1tFd_c0p-Xh8eJ89l_PXp5fZ_by0rJGpRGt4Z5TiKNFS2jHVKCkctg3nVLlOykULvLW1YSioYLK1bc0EB2haKYRkU3Iz9u7C8Ll3Mel-2IdtPqkppZwykIzlFI4pG4YYg-v0LviNCT8aQR_N6F5nM_poRgPV2Uxm7kbG5fe_vAs6Wu-ygYUPzia9GPw_9C-xVWlx</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Atik, Fouzul</creator><creator>Bapat, R.B.</creator><creator>Rajesh Kannan, M.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8038-1795</orcidid></search><sort><creationdate>20190615</creationdate><title>Resistance matrices of graphs with matrix weights</title><author>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Eigenvalues</topic><topic>Inertia</topic><topic>Inverse</topic><topic>Laplacian matrix</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Matrix weighted graph</topic><topic>Moore–Penrose inverse</topic><topic>Resistance matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atik, Fouzul</creatorcontrib><creatorcontrib>Bapat, R.B.</creatorcontrib><creatorcontrib>Rajesh Kannan, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atik, Fouzul</au><au>Bapat, R.B.</au><au>Rajesh Kannan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance matrices of graphs with matrix weights</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>571</volume><spage>41</spage><epage>57</epage><pages>41-57</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.02.011</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8038-1795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2019-06, Vol.571, p.41-57 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2225230833 |
source | ScienceDirect Freedom Collection |
subjects | Apexes Eigenvalues Inertia Inverse Laplacian matrix Linear algebra Mathematical analysis Matrix methods Matrix weighted graph Moore–Penrose inverse Resistance matrix |
title | Resistance matrices of graphs with matrix weights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20matrices%20of%20graphs%20with%20matrix%20weights&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Atik,%20Fouzul&rft.date=2019-06-15&rft.volume=571&rft.spage=41&rft.epage=57&rft.pages=41-57&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.02.011&rft_dat=%3Cproquest_cross%3E2225230833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225230833&rft_id=info:pmid/&rfr_iscdi=true |