Loading…

Resistance matrices of graphs with matrix weights

The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size....

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2019-06, Vol.571, p.41-57
Main Authors: Atik, Fouzul, Bapat, R.B., Rajesh Kannan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783
cites cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783
container_end_page 57
container_issue
container_start_page 41
container_title Linear algebra and its applications
container_volume 571
creator Atik, Fouzul
Bapat, R.B.
Rajesh Kannan, M.
description The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.
doi_str_mv 10.1016/j.laa.2019.02.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225230833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519300667</els_id><sourcerecordid>2225230833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC511nks0mwZMUv6AgiJ5DNs22WdpuTVKr_96U9expYHifd4aHkGuECgGb275aG1NRQFUBrQDxhExQClai5M0pmQDQumRC8XNyEWMPALUAOiH45qKPyWytKzYmBW9dLIauWAazW8Xi4NNq3H8XB-eXqxQvyVln1tFd_c0p-Xh8eJ89l_PXp5fZ_by0rJGpRGt4Z5TiKNFS2jHVKCkctg3nVLlOykULvLW1YSioYLK1bc0EB2haKYRkU3Iz9u7C8Ll3Mel-2IdtPqkppZwykIzlFI4pG4YYg-v0LviNCT8aQR_N6F5nM_poRgPV2Uxm7kbG5fe_vAs6Wu-ygYUPzia9GPw_9C-xVWlx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225230833</pqid></control><display><type>article</type><title>Resistance matrices of graphs with matrix weights</title><source>ScienceDirect Freedom Collection</source><creator>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</creator><creatorcontrib>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</creatorcontrib><description>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.02.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Apexes ; Eigenvalues ; Inertia ; Inverse ; Laplacian matrix ; Linear algebra ; Mathematical analysis ; Matrix methods ; Matrix weighted graph ; Moore–Penrose inverse ; Resistance matrix</subject><ispartof>Linear algebra and its applications, 2019-06, Vol.571, p.41-57</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</citedby><cites>FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</cites><orcidid>0000-0001-8038-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Atik, Fouzul</creatorcontrib><creatorcontrib>Bapat, R.B.</creatorcontrib><creatorcontrib>Rajesh Kannan, M.</creatorcontrib><title>Resistance matrices of graphs with matrix weights</title><title>Linear algebra and its applications</title><description>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</description><subject>Apexes</subject><subject>Eigenvalues</subject><subject>Inertia</subject><subject>Inverse</subject><subject>Laplacian matrix</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Matrix weighted graph</subject><subject>Moore–Penrose inverse</subject><subject>Resistance matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuC511nks0mwZMUv6AgiJ5DNs22WdpuTVKr_96U9expYHifd4aHkGuECgGb275aG1NRQFUBrQDxhExQClai5M0pmQDQumRC8XNyEWMPALUAOiH45qKPyWytKzYmBW9dLIauWAazW8Xi4NNq3H8XB-eXqxQvyVln1tFd_c0p-Xh8eJ89l_PXp5fZ_by0rJGpRGt4Z5TiKNFS2jHVKCkctg3nVLlOykULvLW1YSioYLK1bc0EB2haKYRkU3Iz9u7C8Ll3Mel-2IdtPqkppZwykIzlFI4pG4YYg-v0LviNCT8aQR_N6F5nM_poRgPV2Uxm7kbG5fe_vAs6Wu-ygYUPzia9GPw_9C-xVWlx</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Atik, Fouzul</creator><creator>Bapat, R.B.</creator><creator>Rajesh Kannan, M.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8038-1795</orcidid></search><sort><creationdate>20190615</creationdate><title>Resistance matrices of graphs with matrix weights</title><author>Atik, Fouzul ; Bapat, R.B. ; Rajesh Kannan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Eigenvalues</topic><topic>Inertia</topic><topic>Inverse</topic><topic>Laplacian matrix</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Matrix weighted graph</topic><topic>Moore–Penrose inverse</topic><topic>Resistance matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atik, Fouzul</creatorcontrib><creatorcontrib>Bapat, R.B.</creatorcontrib><creatorcontrib>Rajesh Kannan, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atik, Fouzul</au><au>Bapat, R.B.</au><au>Rajesh Kannan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance matrices of graphs with matrix weights</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>571</volume><spage>41</spage><epage>57</epage><pages>41-57</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The resistance matrix of a simple connected graph G is denoted by R, and is defined by R=(rij), where rij is the resistance distance between the vertices i and j of G. In this paper, we consider the resistance matrix of weighted graph with edge weights being positive definite matrices of same size. We derive a formula for the determinant and the inverse of the resistance matrix. Then, we establish an interlacing inequality for the eigenvalues of resistance and Laplacian matrices of tree. Using this interlacing inequality, we obtain the inertia of the resistance matrix of tree.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.02.011</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8038-1795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-06, Vol.571, p.41-57
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2225230833
source ScienceDirect Freedom Collection
subjects Apexes
Eigenvalues
Inertia
Inverse
Laplacian matrix
Linear algebra
Mathematical analysis
Matrix methods
Matrix weighted graph
Moore–Penrose inverse
Resistance matrix
title Resistance matrices of graphs with matrix weights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20matrices%20of%20graphs%20with%20matrix%20weights&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Atik,%20Fouzul&rft.date=2019-06-15&rft.volume=571&rft.spage=41&rft.epage=57&rft.pages=41-57&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.02.011&rft_dat=%3Cproquest_cross%3E2225230833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-1ca5fa995181c22f396987e1b65529ef88db05bc4a3172738bcb4375006b87783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225230833&rft_id=info:pmid/&rfr_iscdi=true