Loading…
Deep Local Trajectory Replanning and Control for Robot Navigation
We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of t...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pokle, Ashwini Martín-Martín, Roberto Goebel, Patrick Chow, Vincent Ewald, Hans M Yang, Junwei Wang, Zhenkai Sadeghian, Amir Sadigh, Dorsa Savarese, Silvio Vázquez, Marynel |
description | We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of the system adjust the behavior of the robot through attention mechanisms such that it moves towards the goal, avoids obstacles, and respects the space of nearby pedestrians. Both the structure of the proposed deep models and the use of attention mechanisms make the system's execution interpretable. Our simulation experiments suggest that the proposed architecture outperforms baselines that try to map global plan information and sensor data directly to velocity commands. In comparison to a hand-designed traditional navigation system, the proposed approach showed more consistent performance. |
doi_str_mv | 10.48550/arxiv.1905.05279 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2225513044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225513044</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-ee8af2ad17cd7fcd747631b964f4f3b91490ba6ab315e947784eaa26762e96f03</originalsourceid><addsrcrecordid>eNotj8tqwzAUREWh0JDmA7oTdG1XunpZy-C-AqaF4H24tqVgYyRXdkL79zW0i2F2Z84Q8sBZLgul2BOm7_6ac8tUzhQYe0M2IATPCglwR3bzPDDGQBtQSmzI_tm5iVaxxZHWCQfXLjH90KObRgyhD2eKoaNlDEuKI_Ux0WNs4kI_8NqfceljuCe3HsfZ7f57S-rXl7p8z6rPt0O5rzJUIDPnCvSAHTdtZ_waabTgjdXSSy8ay6VlDWpsBFfOSmMK6RBXTQ3Oas_Eljz-YacUvy5uXk5DvKSwLp4A1i9cMCnFL6llSuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225513044</pqid></control><display><type>article</type><title>Deep Local Trajectory Replanning and Control for Robot Navigation</title><source>ProQuest - Publicly Available Content Database</source><creator>Pokle, Ashwini ; Martín-Martín, Roberto ; Goebel, Patrick ; Chow, Vincent ; Ewald, Hans M ; Yang, Junwei ; Wang, Zhenkai ; Sadeghian, Amir ; Sadigh, Dorsa ; Savarese, Silvio ; Vázquez, Marynel</creator><creatorcontrib>Pokle, Ashwini ; Martín-Martín, Roberto ; Goebel, Patrick ; Chow, Vincent ; Ewald, Hans M ; Yang, Junwei ; Wang, Zhenkai ; Sadeghian, Amir ; Sadigh, Dorsa ; Savarese, Silvio ; Vázquez, Marynel</creatorcontrib><description>We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of the system adjust the behavior of the robot through attention mechanisms such that it moves towards the goal, avoids obstacles, and respects the space of nearby pedestrians. Both the structure of the proposed deep models and the use of attention mechanisms make the system's execution interpretable. Our simulation experiments suggest that the proposed architecture outperforms baselines that try to map global plan information and sensor data directly to velocity commands. In comparison to a hand-designed traditional navigation system, the proposed approach showed more consistent performance.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.05279</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Machine learning ; Navigation systems ; Pedestrians ; Robot control ; Trajectory control</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2225513044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pokle, Ashwini</creatorcontrib><creatorcontrib>Martín-Martín, Roberto</creatorcontrib><creatorcontrib>Goebel, Patrick</creatorcontrib><creatorcontrib>Chow, Vincent</creatorcontrib><creatorcontrib>Ewald, Hans M</creatorcontrib><creatorcontrib>Yang, Junwei</creatorcontrib><creatorcontrib>Wang, Zhenkai</creatorcontrib><creatorcontrib>Sadeghian, Amir</creatorcontrib><creatorcontrib>Sadigh, Dorsa</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Vázquez, Marynel</creatorcontrib><title>Deep Local Trajectory Replanning and Control for Robot Navigation</title><title>arXiv.org</title><description>We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of the system adjust the behavior of the robot through attention mechanisms such that it moves towards the goal, avoids obstacles, and respects the space of nearby pedestrians. Both the structure of the proposed deep models and the use of attention mechanisms make the system's execution interpretable. Our simulation experiments suggest that the proposed architecture outperforms baselines that try to map global plan information and sensor data directly to velocity commands. In comparison to a hand-designed traditional navigation system, the proposed approach showed more consistent performance.</description><subject>Computer simulation</subject><subject>Machine learning</subject><subject>Navigation systems</subject><subject>Pedestrians</subject><subject>Robot control</subject><subject>Trajectory control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tqwzAUREWh0JDmA7oTdG1XunpZy-C-AqaF4H24tqVgYyRXdkL79zW0i2F2Z84Q8sBZLgul2BOm7_6ac8tUzhQYe0M2IATPCglwR3bzPDDGQBtQSmzI_tm5iVaxxZHWCQfXLjH90KObRgyhD2eKoaNlDEuKI_Ux0WNs4kI_8NqfceljuCe3HsfZ7f57S-rXl7p8z6rPt0O5rzJUIDPnCvSAHTdtZ_waabTgjdXSSy8ay6VlDWpsBFfOSmMK6RBXTQ3Oas_Eljz-YacUvy5uXk5DvKSwLp4A1i9cMCnFL6llSuY</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Pokle, Ashwini</creator><creator>Martín-Martín, Roberto</creator><creator>Goebel, Patrick</creator><creator>Chow, Vincent</creator><creator>Ewald, Hans M</creator><creator>Yang, Junwei</creator><creator>Wang, Zhenkai</creator><creator>Sadeghian, Amir</creator><creator>Sadigh, Dorsa</creator><creator>Savarese, Silvio</creator><creator>Vázquez, Marynel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190513</creationdate><title>Deep Local Trajectory Replanning and Control for Robot Navigation</title><author>Pokle, Ashwini ; Martín-Martín, Roberto ; Goebel, Patrick ; Chow, Vincent ; Ewald, Hans M ; Yang, Junwei ; Wang, Zhenkai ; Sadeghian, Amir ; Sadigh, Dorsa ; Savarese, Silvio ; Vázquez, Marynel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-ee8af2ad17cd7fcd747631b964f4f3b91490ba6ab315e947784eaa26762e96f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Machine learning</topic><topic>Navigation systems</topic><topic>Pedestrians</topic><topic>Robot control</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Pokle, Ashwini</creatorcontrib><creatorcontrib>Martín-Martín, Roberto</creatorcontrib><creatorcontrib>Goebel, Patrick</creatorcontrib><creatorcontrib>Chow, Vincent</creatorcontrib><creatorcontrib>Ewald, Hans M</creatorcontrib><creatorcontrib>Yang, Junwei</creatorcontrib><creatorcontrib>Wang, Zhenkai</creatorcontrib><creatorcontrib>Sadeghian, Amir</creatorcontrib><creatorcontrib>Sadigh, Dorsa</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Vázquez, Marynel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokle, Ashwini</au><au>Martín-Martín, Roberto</au><au>Goebel, Patrick</au><au>Chow, Vincent</au><au>Ewald, Hans M</au><au>Yang, Junwei</au><au>Wang, Zhenkai</au><au>Sadeghian, Amir</au><au>Sadigh, Dorsa</au><au>Savarese, Silvio</au><au>Vázquez, Marynel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Local Trajectory Replanning and Control for Robot Navigation</atitle><jtitle>arXiv.org</jtitle><date>2019-05-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a navigation system that combines ideas from hierarchical planning and machine learning. The system uses a traditional global planner to compute optimal paths towards a goal, and a deep local trajectory planner and velocity controller to compute motion commands. The latter components of the system adjust the behavior of the robot through attention mechanisms such that it moves towards the goal, avoids obstacles, and respects the space of nearby pedestrians. Both the structure of the proposed deep models and the use of attention mechanisms make the system's execution interpretable. Our simulation experiments suggest that the proposed architecture outperforms baselines that try to map global plan information and sensor data directly to velocity commands. In comparison to a hand-designed traditional navigation system, the proposed approach showed more consistent performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.05279</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2225513044 |
source | ProQuest - Publicly Available Content Database |
subjects | Computer simulation Machine learning Navigation systems Pedestrians Robot control Trajectory control |
title | Deep Local Trajectory Replanning and Control for Robot Navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Local%20Trajectory%20Replanning%20and%20Control%20for%20Robot%20Navigation&rft.jtitle=arXiv.org&rft.au=Pokle,%20Ashwini&rft.date=2019-05-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.05279&rft_dat=%3Cproquest%3E2225513044%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-ee8af2ad17cd7fcd747631b964f4f3b91490ba6ab315e947784eaa26762e96f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225513044&rft_id=info:pmid/&rfr_iscdi=true |