Loading…

Factorials and the finite sequences of sets

We write seq(m) for the cardinality of the set of finite sequences of a set which is of cardinality m. With the Axiom of Choice (AC), seq(m)

Saved in:
Bibliographic Details
Published in:Mathematical logic quarterly 2019-05, Vol.65 (1), p.116-120
Main Authors: Sonpanow, Nattapon, Vejjajiva, Pimpen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3
cites cdi_FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3
container_end_page 120
container_issue 1
container_start_page 116
container_title Mathematical logic quarterly
container_volume 65
creator Sonpanow, Nattapon
Vejjajiva, Pimpen
description We write seq(m) for the cardinality of the set of finite sequences of a set which is of cardinality m. With the Axiom of Choice (AC), seq(m)
doi_str_mv 10.1002/malq.201800052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225558294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225558294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoWKdXzwWP0pq8JG16HMNNoSKCnkOSJtjRtVvSIfvvTano0dPjwff93uOH0C3BOcEYHnaqO-SAicAYczhDCeFAMipKfI4SXDHIeEGKS3QVwnZCSIkTdL9WZhx8q7qQqr5Jx0-burZvR5sGezja3tiQDi4uY7hGFy5y9uZnLtDH-vF99ZTVr5vn1bLODCUlZKAFF6XjBcOGF5pZqCjVTjsGDRClFRdCl04UlQVqGtPopmCcRpgyRYmjC3Q35-79EF8Io9wOR9_HkxIAOOcCKhapfKaMH0Lw1sm9b3fKnyTBcipEToXI30KiUM3CV9vZ0z-0fFnWb3_uN60UYw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225558294</pqid></control><display><type>article</type><title>Factorials and the finite sequences of sets</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sonpanow, Nattapon ; Vejjajiva, Pimpen</creator><creatorcontrib>Sonpanow, Nattapon ; Vejjajiva, Pimpen</creatorcontrib><description>We write seq(m) for the cardinality of the set of finite sequences of a set which is of cardinality m. With the Axiom of Choice (AC), seq(m)&lt;m! for every infinite cardinal m where m! is the cardinality of the permutations on a set which is of cardinality m. In this paper, we show that “seq(m)≠m! for every cardinal m≠0”  is provable in ZF and this is the best possible result in the absence of AC. Similar results are also obtained for seq1−1(m): the cardinality of the set of finite sequences without repetition of a set which is of cardinality m.</description><identifier>ISSN: 0942-5616</identifier><identifier>EISSN: 1521-3870</identifier><identifier>DOI: 10.1002/malq.201800052</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Factorials ; Permutations</subject><ispartof>Mathematical logic quarterly, 2019-05, Vol.65 (1), p.116-120</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3</citedby><cites>FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sonpanow, Nattapon</creatorcontrib><creatorcontrib>Vejjajiva, Pimpen</creatorcontrib><title>Factorials and the finite sequences of sets</title><title>Mathematical logic quarterly</title><description>We write seq(m) for the cardinality of the set of finite sequences of a set which is of cardinality m. With the Axiom of Choice (AC), seq(m)&lt;m! for every infinite cardinal m where m! is the cardinality of the permutations on a set which is of cardinality m. In this paper, we show that “seq(m)≠m! for every cardinal m≠0”  is provable in ZF and this is the best possible result in the absence of AC. Similar results are also obtained for seq1−1(m): the cardinality of the set of finite sequences without repetition of a set which is of cardinality m.</description><subject>Factorials</subject><subject>Permutations</subject><issn>0942-5616</issn><issn>1521-3870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoWKdXzwWP0pq8JG16HMNNoSKCnkOSJtjRtVvSIfvvTano0dPjwff93uOH0C3BOcEYHnaqO-SAicAYczhDCeFAMipKfI4SXDHIeEGKS3QVwnZCSIkTdL9WZhx8q7qQqr5Jx0-burZvR5sGezja3tiQDi4uY7hGFy5y9uZnLtDH-vF99ZTVr5vn1bLODCUlZKAFF6XjBcOGF5pZqCjVTjsGDRClFRdCl04UlQVqGtPopmCcRpgyRYmjC3Q35-79EF8Io9wOR9_HkxIAOOcCKhapfKaMH0Lw1sm9b3fKnyTBcipEToXI30KiUM3CV9vZ0z-0fFnWb3_uN60UYw0</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Sonpanow, Nattapon</creator><creator>Vejjajiva, Pimpen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201905</creationdate><title>Factorials and the finite sequences of sets</title><author>Sonpanow, Nattapon ; Vejjajiva, Pimpen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Factorials</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonpanow, Nattapon</creatorcontrib><creatorcontrib>Vejjajiva, Pimpen</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical logic quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonpanow, Nattapon</au><au>Vejjajiva, Pimpen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorials and the finite sequences of sets</atitle><jtitle>Mathematical logic quarterly</jtitle><date>2019-05</date><risdate>2019</risdate><volume>65</volume><issue>1</issue><spage>116</spage><epage>120</epage><pages>116-120</pages><issn>0942-5616</issn><eissn>1521-3870</eissn><abstract>We write seq(m) for the cardinality of the set of finite sequences of a set which is of cardinality m. With the Axiom of Choice (AC), seq(m)&lt;m! for every infinite cardinal m where m! is the cardinality of the permutations on a set which is of cardinality m. In this paper, we show that “seq(m)≠m! for every cardinal m≠0”  is provable in ZF and this is the best possible result in the absence of AC. Similar results are also obtained for seq1−1(m): the cardinality of the set of finite sequences without repetition of a set which is of cardinality m.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/malq.201800052</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0942-5616
ispartof Mathematical logic quarterly, 2019-05, Vol.65 (1), p.116-120
issn 0942-5616
1521-3870
language eng
recordid cdi_proquest_journals_2225558294
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Factorials
Permutations
title Factorials and the finite sequences of sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorials%20and%20the%20finite%20sequences%20of%20sets&rft.jtitle=Mathematical%20logic%20quarterly&rft.au=Sonpanow,%20Nattapon&rft.date=2019-05&rft.volume=65&rft.issue=1&rft.spage=116&rft.epage=120&rft.pages=116-120&rft.issn=0942-5616&rft.eissn=1521-3870&rft_id=info:doi/10.1002/malq.201800052&rft_dat=%3Cproquest_cross%3E2225558294%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3172-2b8587f5640c56b4e2933bfbf42d21aba588b7f869e23cdcdbd64530c534a31f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225558294&rft_id=info:pmid/&rfr_iscdi=true