Loading…
An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system
•Developing an intelligent approach for modeling of geothermal organic Rankine cycle.•The intelligent methods are ANFIS optimized with PSO (ANFIS-PSO) and MLP-PSO.•Intelligent methods are employed for thermodynamic and economic modeling of the system.•Intelligent methods have shown an excellent mode...
Saved in:
Published in: | Geothermics 2019-07, Vol.80, p.138-154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Developing an intelligent approach for modeling of geothermal organic Rankine cycle.•The intelligent methods are ANFIS optimized with PSO (ANFIS-PSO) and MLP-PSO.•Intelligent methods are employed for thermodynamic and economic modeling of the system.•Intelligent methods have shown an excellent modeling ability.
Geothermal energy is a renewable resource that is constantly available. The low geothermal well operating lifetime is the main challenge in using this type of renewable energy. This problem can be covered by the aid of solar system (hybrid system). For complicated renewable energy systems, finding the optimum design parameters and operating conditions require to develop experimental apparatus or sophisticated thermodynamic models. Hence, in this study, artificial intelligence (AI) approach is proposed for modeling the geothermal organic Rankin cycle (GORC) equipped with solar thermal unit. Indeed, the current study depicts how AI methods can meticulously simulate the operation of a complicated renewable energy system. The developed intelligent methods are adaptive neuro-fuzzy inference system (ANFIS) optimized with particle swarm optimization (PSO) algorithm (ANFIS-PSO) and multilayer perceptron (MLP) neural network optimized with PSO algorithm (MLP-PSO). The models are composed based on the main design parameters of the geothermal system that are solar radiation, well temperature, working fluid mass flow rate, turbine output pressure, surface area of the solar collector and preheater inlet pressure. The intelligent models use the mentioned input variables to predict the net power output, energy efficiency, exergy efficiency and levelized cost of energy (LCOE) of the GORC. Energy, exergy and economic analyses are carried out for the low global warming potential (GWP) refrigerants. It was found out that although the intelligent models can meticulously predict the targets, ANFIS-PSO performs better than MLP-PSO for modeling the GORC with solar system. Root mean square error of this model for prediction of power generation, energy efficiency, exergy efficiency and LCOE was 12.023 (kW), 3.587 ×10-4, 3.278 ×10-4 and 1.332 ×10-4, respectively. |
---|---|
ISSN: | 0375-6505 1879-3576 |
DOI: | 10.1016/j.geothermics.2019.03.003 |