Loading…
Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors
Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on...
Saved in:
Published in: | Pest management science 2007-05, Vol.63 (5), p.491-494 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13 |
container_end_page | 494 |
container_issue | 5 |
container_start_page | 491 |
container_title | Pest management science |
container_volume | 63 |
creator | Kuehr, I Nunez, O |
description | Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)). |
doi_str_mv | 10.1002/ps.1355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_222667953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1254194261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</originalsourceid><addsrcrecordid>eNp10Mtu1DAUBmALgegFxBtAhFSxQGmP7diJl3REC2VUKnUq2FmOL4PLTJzaiWjfHreJ2lVXPovP5z_6EXqH4RADkKM-HWLK2Au0ixnhZSVE8_Jxbn7voL2UrgFACEFeox1cU1FjXO2ii5UfVOfHbWF8uPXGFv2fMATfmVFbUxi7jsqowYeuCK5IYZuBTYPXmR65sVs_TEUfrR5jCjG9Qa-c2iT7dn730dXJ19XiW7n8efp98WVZ6gooK6lyqq4qZxx2wnBRW90KZaHRLaEESOWUUBXXjFCGuQBguGUaLBjcNtBiuo8-Tnv7GG7GfJK8DmPscqQkhHBeC0Yz-jQhHUNK0TrZR79V8U5ikPfFyT7J--KyfD-vG9utNU9ubiqDgxmopNXGRdVpn55cwxvKKp7d58n98xt791yevLicY8tJ-zTY20et4l_Ja1oz-ev8VP44Z6vF8uRMHmf_YfJOBanWMV9wdUkAU4D64QP9D1Gvm9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222667953</pqid></control><display><type>article</type><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kuehr, I ; Nunez, O</creator><creatorcontrib>Kuehr, I ; Nunez, O</creatorcontrib><description>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.1355</identifier><identifier>PMID: 17397114</identifier><identifier>CODEN: PMSCFC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>1,2,4‐triazole ; 4-triazole ; Adsorption ; Biodegradation ; Biological and medical sciences ; catalysts ; Chemical compounds ; Control ; Environmental Pollutants - chemistry ; Environmental Pollutants - radiation effects ; Environmental Restoration and Remediation - methods ; Fundamental and applied biological sciences. Psychology ; Fungal plant pathogens ; fungicides ; heterocyclic nitrogen compounds ; Hydrogen-Ion Concentration ; imidazole ; imidazoles ; Imidazoles - chemistry ; Imidazoles - radiation effects ; Kinetics ; Langmuir-Hinshelwood ; Pesticides ; Pesticides - chemistry ; Pesticides - radiation effects ; photocatalysis ; photolysis ; Phytopathology. Animal pests. Plant and forest protection ; pyrrole ; pyrroles ; Pyrroles - chemistry ; Pyrroles - radiation effects ; solar radiation ; Titanium - chemistry ; titanium dioxide ; triazoles ; Triazoles - chemistry ; Triazoles - radiation effects ; Ultraviolet Rays ; wastewater treatment ; water pollution</subject><ispartof>Pest management science, 2007-05, Vol.63 (5), p.491-494</ispartof><rights>Copyright © 2007 Society of Chemical Industry</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited May 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</citedby><cites>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18683546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17397114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehr, I</creatorcontrib><creatorcontrib>Nunez, O</creatorcontrib><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><title>Pest management science</title><addtitle>Pest. Manag. Sci</addtitle><description>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</description><subject>1,2,4‐triazole</subject><subject>4-triazole</subject><subject>Adsorption</subject><subject>Biodegradation</subject><subject>Biological and medical sciences</subject><subject>catalysts</subject><subject>Chemical compounds</subject><subject>Control</subject><subject>Environmental Pollutants - chemistry</subject><subject>Environmental Pollutants - radiation effects</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal plant pathogens</subject><subject>fungicides</subject><subject>heterocyclic nitrogen compounds</subject><subject>Hydrogen-Ion Concentration</subject><subject>imidazole</subject><subject>imidazoles</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - radiation effects</subject><subject>Kinetics</subject><subject>Langmuir-Hinshelwood</subject><subject>Pesticides</subject><subject>Pesticides - chemistry</subject><subject>Pesticides - radiation effects</subject><subject>photocatalysis</subject><subject>photolysis</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>pyrrole</subject><subject>pyrroles</subject><subject>Pyrroles - chemistry</subject><subject>Pyrroles - radiation effects</subject><subject>solar radiation</subject><subject>Titanium - chemistry</subject><subject>titanium dioxide</subject><subject>triazoles</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>wastewater treatment</subject><subject>water pollution</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10Mtu1DAUBmALgegFxBtAhFSxQGmP7diJl3REC2VUKnUq2FmOL4PLTJzaiWjfHreJ2lVXPovP5z_6EXqH4RADkKM-HWLK2Au0ixnhZSVE8_Jxbn7voL2UrgFACEFeox1cU1FjXO2ii5UfVOfHbWF8uPXGFv2fMATfmVFbUxi7jsqowYeuCK5IYZuBTYPXmR65sVs_TEUfrR5jCjG9Qa-c2iT7dn730dXJ19XiW7n8efp98WVZ6gooK6lyqq4qZxx2wnBRW90KZaHRLaEESOWUUBXXjFCGuQBguGUaLBjcNtBiuo8-Tnv7GG7GfJK8DmPscqQkhHBeC0Yz-jQhHUNK0TrZR79V8U5ikPfFyT7J--KyfD-vG9utNU9ubiqDgxmopNXGRdVpn55cwxvKKp7d58n98xt791yevLicY8tJ-zTY20et4l_Ja1oz-ev8VP44Z6vF8uRMHmf_YfJOBanWMV9wdUkAU4D64QP9D1Gvm9A</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Kuehr, I</creator><creator>Nunez, O</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>200705</creationdate><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><author>Kuehr, I ; Nunez, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>1,2,4‐triazole</topic><topic>4-triazole</topic><topic>Adsorption</topic><topic>Biodegradation</topic><topic>Biological and medical sciences</topic><topic>catalysts</topic><topic>Chemical compounds</topic><topic>Control</topic><topic>Environmental Pollutants - chemistry</topic><topic>Environmental Pollutants - radiation effects</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal plant pathogens</topic><topic>fungicides</topic><topic>heterocyclic nitrogen compounds</topic><topic>Hydrogen-Ion Concentration</topic><topic>imidazole</topic><topic>imidazoles</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - radiation effects</topic><topic>Kinetics</topic><topic>Langmuir-Hinshelwood</topic><topic>Pesticides</topic><topic>Pesticides - chemistry</topic><topic>Pesticides - radiation effects</topic><topic>photocatalysis</topic><topic>photolysis</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>pyrrole</topic><topic>pyrroles</topic><topic>Pyrroles - chemistry</topic><topic>Pyrroles - radiation effects</topic><topic>solar radiation</topic><topic>Titanium - chemistry</topic><topic>titanium dioxide</topic><topic>triazoles</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>wastewater treatment</topic><topic>water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehr, I</creatorcontrib><creatorcontrib>Nunez, O</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehr, I</au><au>Nunez, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</atitle><jtitle>Pest management science</jtitle><addtitle>Pest. Manag. Sci</addtitle><date>2007-05</date><risdate>2007</risdate><volume>63</volume><issue>5</issue><spage>491</spage><epage>494</epage><pages>491-494</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><coden>PMSCFC</coden><abstract>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>17397114</pmid><doi>10.1002/ps.1355</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-498X |
ispartof | Pest management science, 2007-05, Vol.63 (5), p.491-494 |
issn | 1526-498X 1526-4998 |
language | eng |
recordid | cdi_proquest_journals_222667953 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 1,2,4‐triazole 4-triazole Adsorption Biodegradation Biological and medical sciences catalysts Chemical compounds Control Environmental Pollutants - chemistry Environmental Pollutants - radiation effects Environmental Restoration and Remediation - methods Fundamental and applied biological sciences. Psychology Fungal plant pathogens fungicides heterocyclic nitrogen compounds Hydrogen-Ion Concentration imidazole imidazoles Imidazoles - chemistry Imidazoles - radiation effects Kinetics Langmuir-Hinshelwood Pesticides Pesticides - chemistry Pesticides - radiation effects photocatalysis photolysis Phytopathology. Animal pests. Plant and forest protection pyrrole pyrroles Pyrroles - chemistry Pyrroles - radiation effects solar radiation Titanium - chemistry titanium dioxide triazoles Triazoles - chemistry Triazoles - radiation effects Ultraviolet Rays wastewater treatment water pollution |
title | Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20dioxide%20photoinduced%20degradation%20of%20some%20pesticide/fungicide%20precursors&rft.jtitle=Pest%20management%20science&rft.au=Kuehr,%20I&rft.date=2007-05&rft.volume=63&rft.issue=5&rft.spage=491&rft.epage=494&rft.pages=491-494&rft.issn=1526-498X&rft.eissn=1526-4998&rft.coden=PMSCFC&rft_id=info:doi/10.1002/ps.1355&rft_dat=%3Cproquest_cross%3E1254194261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222667953&rft_id=info:pmid/17397114&rfr_iscdi=true |