Loading…

Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors

Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2007-05, Vol.63 (5), p.491-494
Main Authors: Kuehr, I, Nunez, O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13
cites cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13
container_end_page 494
container_issue 5
container_start_page 491
container_title Pest management science
container_volume 63
creator Kuehr, I
Nunez, O
description Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).
doi_str_mv 10.1002/ps.1355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_222667953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1254194261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</originalsourceid><addsrcrecordid>eNp10Mtu1DAUBmALgegFxBtAhFSxQGmP7diJl3REC2VUKnUq2FmOL4PLTJzaiWjfHreJ2lVXPovP5z_6EXqH4RADkKM-HWLK2Au0ixnhZSVE8_Jxbn7voL2UrgFACEFeox1cU1FjXO2ii5UfVOfHbWF8uPXGFv2fMATfmVFbUxi7jsqowYeuCK5IYZuBTYPXmR65sVs_TEUfrR5jCjG9Qa-c2iT7dn730dXJ19XiW7n8efp98WVZ6gooK6lyqq4qZxx2wnBRW90KZaHRLaEESOWUUBXXjFCGuQBguGUaLBjcNtBiuo8-Tnv7GG7GfJK8DmPscqQkhHBeC0Yz-jQhHUNK0TrZR79V8U5ikPfFyT7J--KyfD-vG9utNU9ubiqDgxmopNXGRdVpn55cwxvKKp7d58n98xt791yevLicY8tJ-zTY20et4l_Ja1oz-ev8VP44Z6vF8uRMHmf_YfJOBanWMV9wdUkAU4D64QP9D1Gvm9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222667953</pqid></control><display><type>article</type><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kuehr, I ; Nunez, O</creator><creatorcontrib>Kuehr, I ; Nunez, O</creatorcontrib><description>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.1355</identifier><identifier>PMID: 17397114</identifier><identifier>CODEN: PMSCFC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>1,2,4‐triazole ; 4-triazole ; Adsorption ; Biodegradation ; Biological and medical sciences ; catalysts ; Chemical compounds ; Control ; Environmental Pollutants - chemistry ; Environmental Pollutants - radiation effects ; Environmental Restoration and Remediation - methods ; Fundamental and applied biological sciences. Psychology ; Fungal plant pathogens ; fungicides ; heterocyclic nitrogen compounds ; Hydrogen-Ion Concentration ; imidazole ; imidazoles ; Imidazoles - chemistry ; Imidazoles - radiation effects ; Kinetics ; Langmuir-Hinshelwood ; Pesticides ; Pesticides - chemistry ; Pesticides - radiation effects ; photocatalysis ; photolysis ; Phytopathology. Animal pests. Plant and forest protection ; pyrrole ; pyrroles ; Pyrroles - chemistry ; Pyrroles - radiation effects ; solar radiation ; Titanium - chemistry ; titanium dioxide ; triazoles ; Triazoles - chemistry ; Triazoles - radiation effects ; Ultraviolet Rays ; wastewater treatment ; water pollution</subject><ispartof>Pest management science, 2007-05, Vol.63 (5), p.491-494</ispartof><rights>Copyright © 2007 Society of Chemical Industry</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited May 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</citedby><cites>FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18683546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17397114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehr, I</creatorcontrib><creatorcontrib>Nunez, O</creatorcontrib><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><title>Pest management science</title><addtitle>Pest. Manag. Sci</addtitle><description>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</description><subject>1,2,4‐triazole</subject><subject>4-triazole</subject><subject>Adsorption</subject><subject>Biodegradation</subject><subject>Biological and medical sciences</subject><subject>catalysts</subject><subject>Chemical compounds</subject><subject>Control</subject><subject>Environmental Pollutants - chemistry</subject><subject>Environmental Pollutants - radiation effects</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal plant pathogens</subject><subject>fungicides</subject><subject>heterocyclic nitrogen compounds</subject><subject>Hydrogen-Ion Concentration</subject><subject>imidazole</subject><subject>imidazoles</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - radiation effects</subject><subject>Kinetics</subject><subject>Langmuir-Hinshelwood</subject><subject>Pesticides</subject><subject>Pesticides - chemistry</subject><subject>Pesticides - radiation effects</subject><subject>photocatalysis</subject><subject>photolysis</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>pyrrole</subject><subject>pyrroles</subject><subject>Pyrroles - chemistry</subject><subject>Pyrroles - radiation effects</subject><subject>solar radiation</subject><subject>Titanium - chemistry</subject><subject>titanium dioxide</subject><subject>triazoles</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>wastewater treatment</subject><subject>water pollution</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10Mtu1DAUBmALgegFxBtAhFSxQGmP7diJl3REC2VUKnUq2FmOL4PLTJzaiWjfHreJ2lVXPovP5z_6EXqH4RADkKM-HWLK2Au0ixnhZSVE8_Jxbn7voL2UrgFACEFeox1cU1FjXO2ii5UfVOfHbWF8uPXGFv2fMATfmVFbUxi7jsqowYeuCK5IYZuBTYPXmR65sVs_TEUfrR5jCjG9Qa-c2iT7dn730dXJ19XiW7n8efp98WVZ6gooK6lyqq4qZxx2wnBRW90KZaHRLaEESOWUUBXXjFCGuQBguGUaLBjcNtBiuo8-Tnv7GG7GfJK8DmPscqQkhHBeC0Yz-jQhHUNK0TrZR79V8U5ikPfFyT7J--KyfD-vG9utNU9ubiqDgxmopNXGRdVpn55cwxvKKp7d58n98xt791yevLicY8tJ-zTY20et4l_Ja1oz-ev8VP44Z6vF8uRMHmf_YfJOBanWMV9wdUkAU4D64QP9D1Gvm9A</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Kuehr, I</creator><creator>Nunez, O</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>200705</creationdate><title>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</title><author>Kuehr, I ; Nunez, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>1,2,4‐triazole</topic><topic>4-triazole</topic><topic>Adsorption</topic><topic>Biodegradation</topic><topic>Biological and medical sciences</topic><topic>catalysts</topic><topic>Chemical compounds</topic><topic>Control</topic><topic>Environmental Pollutants - chemistry</topic><topic>Environmental Pollutants - radiation effects</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal plant pathogens</topic><topic>fungicides</topic><topic>heterocyclic nitrogen compounds</topic><topic>Hydrogen-Ion Concentration</topic><topic>imidazole</topic><topic>imidazoles</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - radiation effects</topic><topic>Kinetics</topic><topic>Langmuir-Hinshelwood</topic><topic>Pesticides</topic><topic>Pesticides - chemistry</topic><topic>Pesticides - radiation effects</topic><topic>photocatalysis</topic><topic>photolysis</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>pyrrole</topic><topic>pyrroles</topic><topic>Pyrroles - chemistry</topic><topic>Pyrroles - radiation effects</topic><topic>solar radiation</topic><topic>Titanium - chemistry</topic><topic>titanium dioxide</topic><topic>triazoles</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>wastewater treatment</topic><topic>water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehr, I</creatorcontrib><creatorcontrib>Nunez, O</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehr, I</au><au>Nunez, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors</atitle><jtitle>Pest management science</jtitle><addtitle>Pest. Manag. Sci</addtitle><date>2007-05</date><risdate>2007</risdate><volume>63</volume><issue>5</issue><spage>491</spage><epage>494</epage><pages>491-494</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><coden>PMSCFC</coden><abstract>Five-membered nitrogen heterocycles (pyrrole, imidazole and 1,2,4-triazole) have been degraded using titanium dioxide and simulated solar radiation at pH = 8. The degradations followed a simple Langmuir-Hinshelwood mechanism. Accordingly, the adsorption equilibrium constants K of the heterocycles on the titanium dioxide surface and the rate constants k of degradation of the heterocycle-catalyst adduct have been obtained experimentally. While the K values decrease with heterocycle pKa, the k values increase with increasing pKa. Therefore, apparently, the rate constant depends on the availability of the electron pair on nitrogen, but at the same time the electron pair repulsion induced by the negatively charged titanium dioxide surface at pH = 8 causes a reverse effect in the adsorption equilibrium constant. Only in the case of imidazole, where the adsorption equilibrium constant is low enough (K = 0.013 M-1), can the rate constant be approximated to a pseudo-first-order rate expression: k(obs) = Kk. In all other cases, k(obs) = Kk/(1 + K(heterocycle)).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17397114</pmid><doi>10.1002/ps.1355</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2007-05, Vol.63 (5), p.491-494
issn 1526-498X
1526-4998
language eng
recordid cdi_proquest_journals_222667953
source Wiley-Blackwell Read & Publish Collection
subjects 1,2,4‐triazole
4-triazole
Adsorption
Biodegradation
Biological and medical sciences
catalysts
Chemical compounds
Control
Environmental Pollutants - chemistry
Environmental Pollutants - radiation effects
Environmental Restoration and Remediation - methods
Fundamental and applied biological sciences. Psychology
Fungal plant pathogens
fungicides
heterocyclic nitrogen compounds
Hydrogen-Ion Concentration
imidazole
imidazoles
Imidazoles - chemistry
Imidazoles - radiation effects
Kinetics
Langmuir-Hinshelwood
Pesticides
Pesticides - chemistry
Pesticides - radiation effects
photocatalysis
photolysis
Phytopathology. Animal pests. Plant and forest protection
pyrrole
pyrroles
Pyrroles - chemistry
Pyrroles - radiation effects
solar radiation
Titanium - chemistry
titanium dioxide
triazoles
Triazoles - chemistry
Triazoles - radiation effects
Ultraviolet Rays
wastewater treatment
water pollution
title Titanium dioxide photoinduced degradation of some pesticide/fungicide precursors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20dioxide%20photoinduced%20degradation%20of%20some%20pesticide/fungicide%20precursors&rft.jtitle=Pest%20management%20science&rft.au=Kuehr,%20I&rft.date=2007-05&rft.volume=63&rft.issue=5&rft.spage=491&rft.epage=494&rft.pages=491-494&rft.issn=1526-498X&rft.eissn=1526-4998&rft.coden=PMSCFC&rft_id=info:doi/10.1002/ps.1355&rft_dat=%3Cproquest_cross%3E1254194261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4035-3afa744fdf1f9d697ecb9ae08cb232024fa9a46c52351690051b5c0e0d1b80b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222667953&rft_id=info:pmid/17397114&rfr_iscdi=true