Loading…
Synthesis of graphene/carbon nanofiber for electrochemical determination of levodopa in the presence of uric acid
Carbon nanofiber (CNF) was prepared by electrospinning using polypropylene and nickel was coated on the CNF by electroless plating. Then, graphene (Gr) was synthesized on the surface of nickel by chemical vapor deposition. After etching nickel, the Gr/CNF was obtained eventually and then used as a w...
Saved in:
Published in: | Ionics 2019-06, Vol.25 (6), p.2835-2843 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon nanofiber (CNF) was prepared by electrospinning using polypropylene and nickel was coated on the CNF by electroless plating. Then, graphene (Gr) was synthesized on the surface of nickel by chemical vapor deposition. After etching nickel, the Gr/CNF was obtained eventually and then used as a working electrode for the determination of levodopa in the presence of uric acid by cyclic voltammetry and differential pulse voltammetry. The morphology and structure were investigated by scanning electron microscopy and Raman spectroscopy, respectively. The results indicate that the electrode exhibits a high sensitivity of 0.26 μA·μM
−1
and a low measured limit of detection of 1 μM for levodopa in the range of 1–60 μM. The electrode shows excellent selectivity, reproducibility, and stability. It was also applied to determine levodopa in the spiked human urine samples. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-018-2801-2 |