Loading…
Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model
In this paper, we consider a partially linear varying coefficient cointegration model. We focus on the estimation of constant coeffients. We derive the saymptotic result for the local constant kernel estimator, which complements the results in Li, Li, Liang and Hsiao (2013) where the local polynomia...
Saved in:
Published in: | Annals of economics and finance 2015-11, Vol.16 (2), p.353-369 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 369 |
container_issue | 2 |
container_start_page | 353 |
container_title | Annals of economics and finance |
container_volume | 16 |
creator | Wang, Luya Liang, Zhongwen Lin, Juan Li, Qi |
description | In this paper, we consider a partially linear varying coefficient cointegration model. We focus on the estimation of constant coeffients. We derive the saymptotic result for the local constant kernel estimator, which complements the results in Li, Li, Liang and Hsiao (2013) where the local polynomial estimation methods are studied. However, Li et al. (2013) impose stronger conditions to rule out the local constant estimation due to technical diffiulties. We give the full treatment of the local constant method in this paper based on a novel proof. From the simulation results reported in the paper, we show that the local constant and local linear estimators perform similarly, but the local constant method requires less data. Also, in fnite sample applications the local linear estimation could suffer from the matrix singularity problem. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2227398876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227398876</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-f02284886c4c959b1db03dbd696885f637370a50691ba24dba378a5710298183</originalsourceid><addsrcrecordid>eNotzjtPwzAUBWAPIFEK_8EScyQ_Evt6RFF5iCAYKkaqm8SuXBm72O7Qf0-kMp3pO-dckRXvhGm01PKG3JZyYKzVoPWKfA9pwkD7FEvFWOmbzdEGuinV_2D1KdLkKNJPzNVjCGc6-Ggx0y_MZx_3C7TO-cnbxfbJx2r3-eLe02zDHbl2GIq9_8812T5ttv1LM3w8v_aPQ3MUXNXGMSGgBVBTO5nOjHwemZzHWRkF0Dm1_NYMO6YMH1G084hSA3aaM2GAg1yTh0vtMaffky11d0inHJfFnRBCSwOglfwDtZZN9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227398876</pqid></control><display><type>article</type><title>Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Wang, Luya ; Liang, Zhongwen ; Lin, Juan ; Li, Qi</creator><creatorcontrib>Wang, Luya ; Liang, Zhongwen ; Lin, Juan ; Li, Qi</creatorcontrib><description>In this paper, we consider a partially linear varying coefficient cointegration model. We focus on the estimation of constant coeffients. We derive the saymptotic result for the local constant kernel estimator, which complements the results in Li, Li, Liang and Hsiao (2013) where the local polynomial estimation methods are studied. However, Li et al. (2013) impose stronger conditions to rule out the local constant estimation due to technical diffiulties. We give the full treatment of the local constant method in this paper based on a novel proof. From the simulation results reported in the paper, we show that the local constant and local linear estimators perform similarly, but the local constant method requires less data. Also, in fnite sample applications the local linear estimation could suffer from the matrix singularity problem.</description><identifier>ISSN: 1529-7373</identifier><language>eng</language><publisher>Beijing: Peking University Press</publisher><subject>Cointegration analysis ; Regression analysis ; Simulation</subject><ispartof>Annals of economics and finance, 2015-11, Vol.16 (2), p.353-369</ispartof><rights>Copyright Peking University Press 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2227398876/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2227398876?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,21394,33223,33611,36060,43733,44363,74221,74895</link.rule.ids></links><search><creatorcontrib>Wang, Luya</creatorcontrib><creatorcontrib>Liang, Zhongwen</creatorcontrib><creatorcontrib>Lin, Juan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><title>Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model</title><title>Annals of economics and finance</title><description>In this paper, we consider a partially linear varying coefficient cointegration model. We focus on the estimation of constant coeffients. We derive the saymptotic result for the local constant kernel estimator, which complements the results in Li, Li, Liang and Hsiao (2013) where the local polynomial estimation methods are studied. However, Li et al. (2013) impose stronger conditions to rule out the local constant estimation due to technical diffiulties. We give the full treatment of the local constant method in this paper based on a novel proof. From the simulation results reported in the paper, we show that the local constant and local linear estimators perform similarly, but the local constant method requires less data. Also, in fnite sample applications the local linear estimation could suffer from the matrix singularity problem.</description><subject>Cointegration analysis</subject><subject>Regression analysis</subject><subject>Simulation</subject><issn>1529-7373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNotzjtPwzAUBWAPIFEK_8EScyQ_Evt6RFF5iCAYKkaqm8SuXBm72O7Qf0-kMp3pO-dckRXvhGm01PKG3JZyYKzVoPWKfA9pwkD7FEvFWOmbzdEGuinV_2D1KdLkKNJPzNVjCGc6-Ggx0y_MZx_3C7TO-cnbxfbJx2r3-eLe02zDHbl2GIq9_8812T5ttv1LM3w8v_aPQ3MUXNXGMSGgBVBTO5nOjHwemZzHWRkF0Dm1_NYMO6YMH1G084hSA3aaM2GAg1yTh0vtMaffky11d0inHJfFnRBCSwOglfwDtZZN9g</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Wang, Luya</creator><creator>Liang, Zhongwen</creator><creator>Lin, Juan</creator><creator>Li, Qi</creator><general>Peking University Press</general><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2R</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model</title><author>Wang, Luya ; Liang, Zhongwen ; Lin, Juan ; Li, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-f02284886c4c959b1db03dbd696885f637370a50691ba24dba378a5710298183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cointegration analysis</topic><topic>Regression analysis</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Luya</creatorcontrib><creatorcontrib>Liang, Zhongwen</creatorcontrib><creatorcontrib>Lin, Juan</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Social Science Journals</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of economics and finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Luya</au><au>Liang, Zhongwen</au><au>Lin, Juan</au><au>Li, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model</atitle><jtitle>Annals of economics and finance</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>16</volume><issue>2</issue><spage>353</spage><epage>369</epage><pages>353-369</pages><issn>1529-7373</issn><abstract>In this paper, we consider a partially linear varying coefficient cointegration model. We focus on the estimation of constant coeffients. We derive the saymptotic result for the local constant kernel estimator, which complements the results in Li, Li, Liang and Hsiao (2013) where the local polynomial estimation methods are studied. However, Li et al. (2013) impose stronger conditions to rule out the local constant estimation due to technical diffiulties. We give the full treatment of the local constant method in this paper based on a novel proof. From the simulation results reported in the paper, we show that the local constant and local linear estimators perform similarly, but the local constant method requires less data. Also, in fnite sample applications the local linear estimation could suffer from the matrix singularity problem.</abstract><cop>Beijing</cop><pub>Peking University Press</pub><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-7373 |
ispartof | Annals of economics and finance, 2015-11, Vol.16 (2), p.353-369 |
issn | 1529-7373 |
language | eng |
recordid | cdi_proquest_journals_2227398876 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3) |
subjects | Cointegration analysis Regression analysis Simulation |
title | Local Constant Kernel Estimation of a Partially Linear Varying Coefficient Cointegration Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Constant%20Kernel%20Estimation%20of%20a%20Partially%20Linear%20Varying%20Coefficient%20Cointegration%20Model&rft.jtitle=Annals%20of%20economics%20and%20finance&rft.au=Wang,%20Luya&rft.date=2015-11-01&rft.volume=16&rft.issue=2&rft.spage=353&rft.epage=369&rft.pages=353-369&rft.issn=1529-7373&rft_id=info:doi/&rft_dat=%3Cproquest%3E2227398876%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-f02284886c4c959b1db03dbd696885f637370a50691ba24dba378a5710298183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2227398876&rft_id=info:pmid/&rfr_iscdi=true |