Loading…

Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method

AbstractThe bridge influence line is an important tool to study the bridge response under moving loads and contains tremendous structural information. Structural deterioration during the bridge’s service life will induce variation in the bridge influence line, which makes it essential to identify th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bridge engineering 2019-08, Vol.24 (8)
Main Authors: Zheng, Xu, Yang, Dong-Hui, Yi, Ting-Hua, Li, Hong-Nan, Chen, Zhi-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13
cites cdi_FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13
container_end_page
container_issue 8
container_start_page
container_title Journal of bridge engineering
container_volume 24
creator Zheng, Xu
Yang, Dong-Hui
Yi, Ting-Hua
Li, Hong-Nan
Chen, Zhi-Wei
description AbstractThe bridge influence line is an important tool to study the bridge response under moving loads and contains tremendous structural information. Structural deterioration during the bridge’s service life will induce variation in the bridge influence line, which makes it essential to identify the influence line exactly from the field measurement data under moving vehicle loads. This article establishes the underdetermined influence line identification model for a bridge under multiaxle vehicle excitation, in which the bridge influence line is identified based on the regularized least-squares QR decomposition method. Then an example of a four-span girder bridge is provided to prove the validity of the method, and the accuracy and computational complexity of different methods in this condition are compared. This study thus provides an effective method for the identification of the bridge influence line with very high computational efficiency and identification accuracy.
doi_str_mv 10.1061/(ASCE)BE.1943-5592.0001458
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227441083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227441083</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwDxFsYJFix3mya0uASkGIFtbW2BkXV21S7GQBX09CC6xYzUP3zEiHkHNGR4zG7PpyvJjmV5N8xLKQ-1GUBSNKKQuj9IAMfneHXU_T0KcJDY7JiXOrPhNnfEDExJpyid6s0usWK4VeYapuLLFqjDYKGlNX3gQcll7XzHHZrsGaz24sEFzjL95bsOi857l3i6rebGtnvplHbN7q8pQcaVg7PNvXIXm9y1-mD37xdD-bjgsfeBI2vtSgFY_LAFCWMksVUEkx4QoQOYQyoSgziFgQaSYZp1ylOgRZahlFnAHjQ3Kxu7u19XuLrhGrurVV91IEQZCEYSeAd6mbXUrZ2jmLWmyt2YD9EIyKXqgQvVAxyUUvT_TyxF5oB8c7GJzCv_M_5P_gF9a4e5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227441083</pqid></control><display><type>article</type><title>Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method</title><source>ASCE Library (civil engineering)</source><creator>Zheng, Xu ; Yang, Dong-Hui ; Yi, Ting-Hua ; Li, Hong-Nan ; Chen, Zhi-Wei</creator><creatorcontrib>Zheng, Xu ; Yang, Dong-Hui ; Yi, Ting-Hua ; Li, Hong-Nan ; Chen, Zhi-Wei</creatorcontrib><description>AbstractThe bridge influence line is an important tool to study the bridge response under moving loads and contains tremendous structural information. Structural deterioration during the bridge’s service life will induce variation in the bridge influence line, which makes it essential to identify the influence line exactly from the field measurement data under moving vehicle loads. This article establishes the underdetermined influence line identification model for a bridge under multiaxle vehicle excitation, in which the bridge influence line is identified based on the regularized least-squares QR decomposition method. Then an example of a four-span girder bridge is provided to prove the validity of the method, and the accuracy and computational complexity of different methods in this condition are compared. This study thus provides an effective method for the identification of the bridge influence line with very high computational efficiency and identification accuracy.</description><identifier>ISSN: 1084-0702</identifier><identifier>EISSN: 1943-5592</identifier><identifier>DOI: 10.1061/(ASCE)BE.1943-5592.0001458</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Accuracy ; Bridge construction ; Bridge loads ; Civil engineering ; Computer applications ; Computing time ; Decomposition ; Girder bridges ; Identification ; Influence lines ; Least squares ; Loads (forces) ; Moving loads ; Service life ; Technical Notes</subject><ispartof>Journal of bridge engineering, 2019-08, Vol.24 (8)</ispartof><rights>2019 American Society of Civil Engineers.</rights><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13</citedby><cites>FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)BE.1943-5592.0001458$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)BE.1943-5592.0001458$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids></links><search><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Yang, Dong-Hui</creatorcontrib><creatorcontrib>Yi, Ting-Hua</creatorcontrib><creatorcontrib>Li, Hong-Nan</creatorcontrib><creatorcontrib>Chen, Zhi-Wei</creatorcontrib><title>Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method</title><title>Journal of bridge engineering</title><description>AbstractThe bridge influence line is an important tool to study the bridge response under moving loads and contains tremendous structural information. Structural deterioration during the bridge’s service life will induce variation in the bridge influence line, which makes it essential to identify the influence line exactly from the field measurement data under moving vehicle loads. This article establishes the underdetermined influence line identification model for a bridge under multiaxle vehicle excitation, in which the bridge influence line is identified based on the regularized least-squares QR decomposition method. Then an example of a four-span girder bridge is provided to prove the validity of the method, and the accuracy and computational complexity of different methods in this condition are compared. This study thus provides an effective method for the identification of the bridge influence line with very high computational efficiency and identification accuracy.</description><subject>Accuracy</subject><subject>Bridge construction</subject><subject>Bridge loads</subject><subject>Civil engineering</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Girder bridges</subject><subject>Identification</subject><subject>Influence lines</subject><subject>Least squares</subject><subject>Loads (forces)</subject><subject>Moving loads</subject><subject>Service life</subject><subject>Technical Notes</subject><issn>1084-0702</issn><issn>1943-5592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwDxFsYJFix3mya0uASkGIFtbW2BkXV21S7GQBX09CC6xYzUP3zEiHkHNGR4zG7PpyvJjmV5N8xLKQ-1GUBSNKKQuj9IAMfneHXU_T0KcJDY7JiXOrPhNnfEDExJpyid6s0usWK4VeYapuLLFqjDYKGlNX3gQcll7XzHHZrsGaz24sEFzjL95bsOi857l3i6rebGtnvplHbN7q8pQcaVg7PNvXIXm9y1-mD37xdD-bjgsfeBI2vtSgFY_LAFCWMksVUEkx4QoQOYQyoSgziFgQaSYZp1ylOgRZahlFnAHjQ3Kxu7u19XuLrhGrurVV91IEQZCEYSeAd6mbXUrZ2jmLWmyt2YD9EIyKXqgQvVAxyUUvT_TyxF5oB8c7GJzCv_M_5P_gF9a4e5k</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Zheng, Xu</creator><creator>Yang, Dong-Hui</creator><creator>Yi, Ting-Hua</creator><creator>Li, Hong-Nan</creator><creator>Chen, Zhi-Wei</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20190801</creationdate><title>Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method</title><author>Zheng, Xu ; Yang, Dong-Hui ; Yi, Ting-Hua ; Li, Hong-Nan ; Chen, Zhi-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Bridge construction</topic><topic>Bridge loads</topic><topic>Civil engineering</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Girder bridges</topic><topic>Identification</topic><topic>Influence lines</topic><topic>Least squares</topic><topic>Loads (forces)</topic><topic>Moving loads</topic><topic>Service life</topic><topic>Technical Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Yang, Dong-Hui</creatorcontrib><creatorcontrib>Yi, Ting-Hua</creatorcontrib><creatorcontrib>Li, Hong-Nan</creatorcontrib><creatorcontrib>Chen, Zhi-Wei</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of bridge engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xu</au><au>Yang, Dong-Hui</au><au>Yi, Ting-Hua</au><au>Li, Hong-Nan</au><au>Chen, Zhi-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method</atitle><jtitle>Journal of bridge engineering</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>24</volume><issue>8</issue><issn>1084-0702</issn><eissn>1943-5592</eissn><abstract>AbstractThe bridge influence line is an important tool to study the bridge response under moving loads and contains tremendous structural information. Structural deterioration during the bridge’s service life will induce variation in the bridge influence line, which makes it essential to identify the influence line exactly from the field measurement data under moving vehicle loads. This article establishes the underdetermined influence line identification model for a bridge under multiaxle vehicle excitation, in which the bridge influence line is identified based on the regularized least-squares QR decomposition method. Then an example of a four-span girder bridge is provided to prove the validity of the method, and the accuracy and computational complexity of different methods in this condition are compared. This study thus provides an effective method for the identification of the bridge influence line with very high computational efficiency and identification accuracy.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)BE.1943-5592.0001458</doi></addata></record>
fulltext fulltext
identifier ISSN: 1084-0702
ispartof Journal of bridge engineering, 2019-08, Vol.24 (8)
issn 1084-0702
1943-5592
language eng
recordid cdi_proquest_journals_2227441083
source ASCE Library (civil engineering)
subjects Accuracy
Bridge construction
Bridge loads
Civil engineering
Computer applications
Computing time
Decomposition
Girder bridges
Identification
Influence lines
Least squares
Loads (forces)
Moving loads
Service life
Technical Notes
title Bridge Influence Line Identification Based on Regularized Least-Squares QR Decomposition Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridge%20Influence%20Line%20Identification%20Based%20on%20Regularized%20Least-Squares%20QR%20Decomposition%20Method&rft.jtitle=Journal%20of%20bridge%20engineering&rft.au=Zheng,%20Xu&rft.date=2019-08-01&rft.volume=24&rft.issue=8&rft.issn=1084-0702&rft.eissn=1943-5592&rft_id=info:doi/10.1061/(ASCE)BE.1943-5592.0001458&rft_dat=%3Cproquest_cross%3E2227441083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-bfafc36d2aebdb98ca0b0e73caee3a4b70eb9a5125f1b1303c8f4abdfb5531a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2227441083&rft_id=info:pmid/&rfr_iscdi=true