Loading…
Accurate body-part reconstruction from a single depth image
Human pose reconstruction using depth images has received much attention for human-centric applications. Body-part labeling at pixel-level has shown to be efficient for human pose reconstruction. This paper presents an accurate human pose reconstruction method from a single depth image by combining...
Saved in:
Published in: | Multimedia systems 2019-06, Vol.25 (3), p.165-176 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human pose reconstruction using depth images has received much attention for human-centric applications. Body-part labeling at pixel-level has shown to be efficient for human pose reconstruction. This paper presents an accurate human pose reconstruction method from a single depth image by combining body-part labeling and nearest pose-matching techniques. New pixel-level depth difference and local curvature-encoding features are introduced to provide more contextual depth information for pixel-level body-part labeling. To reduce the misclassification error, inspired by pose-matching techniques, a corrective step is also proposed. The method extracts depth region proposals from a reference pose and finds the best match using PCT coefficients to correct uncertain labels. Tests on a set of synthetic and natural depth poses showed improved accuracy of body-part labeling compared to the state-of-the-art methods. In addition, in comparison with the previous methods and the Kinect camera, an improved accuracy for human range of motion measurement was obtained . |
---|---|
ISSN: | 0942-4962 1432-1882 |
DOI: | 10.1007/s00530-018-0594-9 |