Loading…

A new binary salp swarm algorithm: development and application for optimization tasks

Salp swarm algorithm (SSA) is one of the recent meta-heuristic algorithms that imitate the behaviors of salps during the navigating and foraging in oceans to perform global optimization. However, the original study of this algorithm was proposed to solve continuous problems, and it cannot be applied...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2019-05, Vol.31 (5), p.1641-1663
Main Authors: Rizk-Allah, Rizk M, Hassanien, Aboul Ella, Elhoseny, Mohamed, Gunasekaran, M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salp swarm algorithm (SSA) is one of the recent meta-heuristic algorithms that imitate the behaviors of salps during the navigating and foraging in oceans to perform global optimization. However, the original study of this algorithm was proposed to solve continuous problems, and it cannot be applied to binary problems directly. In this paper, a new binary version of the SSA named BSSA is proposed based on a modified Arctan transformation. This modification has two features regarding the transfer function, namely multiplicity and mobility. By this modification, the exploration and exploitation capabilities can be enhanced. The proposed BSSA is compared among four variants of transfer functions for solving global optimization problems. Also, a comparative study with different binary algorithms including binary particle swarm, binary bat algorithm and binary sine–cosine algorithm on twenty-four benchmark problems is conducted. Furthermore, the nonparametric statistical test based on Wilcoxon’s rank-sum is carried out at 5% significance level to judge statistically the significant of the obtained results among the different algorithms. The results affirm the superior performance of the modified BSSA variant over the other variants as well as the existing approaches regarding solution quality.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-018-3613-z