Loading…
Search for noncompetitive 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptor (AMPAR) antagonists: Synthesis, pharmacological properties, and computational studies
The development of new 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor (AMPAR) negative modulators has received considerable interest due to their crucial role in specific neurological diseases. In recent years, our research group has been engaged in the development of new...
Saved in:
Published in: | Pure and applied chemistry 2004-01, Vol.76 (5), p.931-939 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of new 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor (AMPAR) negative modulators has received considerable interest due to their crucial role in specific neurological diseases. In recent years, our research group has been engaged in the development of new AMPAR ligands and chemical and biological studies of various 2,3-benzodiazepin-4-(thi)ones (CFMs) and their analogous cyclofunctionalized have been reported. Electrophysiological experiments confirmed that their effects are mediated through the AMPAR complex in a selective and noncompetitive fashion. Moreover, we carried out computational studies which suggested the possible binding site for noncompetitive antagonists; we also developed a 3D ligand-based pharmacophore model in order to map common structural features of highly potent compounds. Our hypothesis was successfully used as a frame work for the design of a new class of allosteric modulators containing a tetrahydroisoquinoline skeleton and led to the discovery of a very potent AMPAR antagonist with marked antiepileptic effects. |
---|---|
ISSN: | 0033-4545 1365-3075 |
DOI: | 10.1351/pac200476050931 |