Loading…
Transport properties of diatomic ions in moderately dense gases in an electrostatic field
The motion of diatomic ions in moderately dense fluids under the action of an electrostatic field is studied through a nonequilibrium molecular dynamics simulation method. The method simulates the motion of the ions and the fluid molecules that constitute their immediate environment. Thus, effective...
Saved in:
Published in: | Pure and applied chemistry 2004-01, Vol.76 (1), p.223-229 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The motion of diatomic ions in moderately dense fluids under the action of an electrostatic field is studied through a nonequilibrium molecular dynamics simulation method. The method simulates the motion of the ions and the fluid molecules that constitute their immediate environment. Thus, effectively, the dissipation of the excess energy of the ions is reproduced leading to steady drift motion. Results revealed the effect of the fluid density on mobility, ion-effective temperatures and diffusion coefficients parallel and perpendicular to the field at various field strengths for a model diatomic ion in Ar. Extension of the method to dense fluids and to polyatomic ions and neutral molecules is discussed. |
---|---|
ISSN: | 0033-4545 1365-3075 |
DOI: | 10.1351/pac200476010223 |