Loading…

Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number

In this research, an experimental investigation was conducted to predict the Laminar-turbulent transition over the wing surface. Furthermore, the effects of a tractor propeller slipstream on both wing aerodynamics and transition front were studied. For tests, a rectangular wing was used with a NACA...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2019-06, Vol.233 (8), p.3033-3041
Main Authors: Aminaei, Hamzeh, Dehghan Manshadi, Mojtaba, Mostofizadeh, Ali Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723
cites cdi_FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723
container_end_page 3041
container_issue 8
container_start_page 3033
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 233
creator Aminaei, Hamzeh
Dehghan Manshadi, Mojtaba
Mostofizadeh, Ali Reza
description In this research, an experimental investigation was conducted to predict the Laminar-turbulent transition over the wing surface. Furthermore, the effects of a tractor propeller slipstream on both wing aerodynamics and transition front were studied. For tests, a rectangular wing was used with a NACA 6-series airfoil section and with a total of 22 pressure orifices. Unsteady pressure measurements were performed over the upper and lower surfaces of the wing in different spanwise locations at different incidence angles. Existence of propeller slipstream changed pressure distribution over the wing surfaces, in both chordwise and spanwise directions and hence affected the wing loading distribution. Statistical analysis of pressure signals was used to predict the boundary layer transition over the wing by computing the root mean square and skewness of the pressure data. The results showed that the transition location moves toward the leading edge due to propeller slipstream. Increase in propeller rotational speed causes that the turbulent flow covers whole portion of the wing surface.
doi_str_mv 10.1177/0954410018793703
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230589716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410018793703</sage_id><sourcerecordid>2230589716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOLp3GXBdzaNppksZxgcMCKLrkqY3Y4c2qUnGsV_gb5sygiB4N3dxXpyD0CUl15RKeUNKkeeUELqQJZeEH6EZIznNOGHiGM0mOJvwU3QWwpakEwWfoa_V5wC-7cFG1eHWfkCI7UbF1lnsDB68G6DrwOPQtUOIHlSPwRjQMeBEiW-A963dYAXeNaNVfasDVrbBtdvZRvkRd2pM8kkZpxSsIu7cHj_DaF3XBGx3fQ3-HJ0Y1QW4-Plz9Hq3elk-ZOun-8fl7TrTnJQxy5u6UKYgohaKCZ5LKZjWdbPgNCeCyRpKzpVKMwCQhnLWCMK5oVxrXhjJ-BxdHXxTs_ddKltt3c7bFFkxxolYlJIWiUUOLO1dCB5MNaSNUpuKkmqau_o7d5JkB0lQG_g1_Zf_DXN8gbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230589716</pqid></control><display><type>article</type><title>Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number</title><source>IMechE Titles Via Sage</source><creator>Aminaei, Hamzeh ; Dehghan Manshadi, Mojtaba ; Mostofizadeh, Ali Reza</creator><creatorcontrib>Aminaei, Hamzeh ; Dehghan Manshadi, Mojtaba ; Mostofizadeh, Ali Reza</creatorcontrib><description>In this research, an experimental investigation was conducted to predict the Laminar-turbulent transition over the wing surface. Furthermore, the effects of a tractor propeller slipstream on both wing aerodynamics and transition front were studied. For tests, a rectangular wing was used with a NACA 6-series airfoil section and with a total of 22 pressure orifices. Unsteady pressure measurements were performed over the upper and lower surfaces of the wing in different spanwise locations at different incidence angles. Existence of propeller slipstream changed pressure distribution over the wing surfaces, in both chordwise and spanwise directions and hence affected the wing loading distribution. Statistical analysis of pressure signals was used to predict the boundary layer transition over the wing by computing the root mean square and skewness of the pressure data. The results showed that the transition location moves toward the leading edge due to propeller slipstream. Increase in propeller rotational speed causes that the turbulent flow covers whole portion of the wing surface.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410018793703</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Boundary layer transition ; Computational fluid dynamics ; Fluid flow ; Incidence angle ; Orifices ; Pressure distribution ; Propeller slipstreams ; Reynolds number ; Slipstreams ; Statistical analysis ; Stress concentration ; Turbulent flow ; Wing loading</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-06, Vol.233 (8), p.3033-3041</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723</citedby><cites>FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723</cites><orcidid>0000-0002-2143-0670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410018793703$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410018793703$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447</link.rule.ids></links><search><creatorcontrib>Aminaei, Hamzeh</creatorcontrib><creatorcontrib>Dehghan Manshadi, Mojtaba</creatorcontrib><creatorcontrib>Mostofizadeh, Ali Reza</creatorcontrib><title>Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>In this research, an experimental investigation was conducted to predict the Laminar-turbulent transition over the wing surface. Furthermore, the effects of a tractor propeller slipstream on both wing aerodynamics and transition front were studied. For tests, a rectangular wing was used with a NACA 6-series airfoil section and with a total of 22 pressure orifices. Unsteady pressure measurements were performed over the upper and lower surfaces of the wing in different spanwise locations at different incidence angles. Existence of propeller slipstream changed pressure distribution over the wing surfaces, in both chordwise and spanwise directions and hence affected the wing loading distribution. Statistical analysis of pressure signals was used to predict the boundary layer transition over the wing by computing the root mean square and skewness of the pressure data. The results showed that the transition location moves toward the leading edge due to propeller slipstream. Increase in propeller rotational speed causes that the turbulent flow covers whole portion of the wing surface.</description><subject>Aerodynamics</subject><subject>Boundary layer transition</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Incidence angle</subject><subject>Orifices</subject><subject>Pressure distribution</subject><subject>Propeller slipstreams</subject><subject>Reynolds number</subject><subject>Slipstreams</subject><subject>Statistical analysis</subject><subject>Stress concentration</subject><subject>Turbulent flow</subject><subject>Wing loading</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOLp3GXBdzaNppksZxgcMCKLrkqY3Y4c2qUnGsV_gb5sygiB4N3dxXpyD0CUl15RKeUNKkeeUELqQJZeEH6EZIznNOGHiGM0mOJvwU3QWwpakEwWfoa_V5wC-7cFG1eHWfkCI7UbF1lnsDB68G6DrwOPQtUOIHlSPwRjQMeBEiW-A963dYAXeNaNVfasDVrbBtdvZRvkRd2pM8kkZpxSsIu7cHj_DaF3XBGx3fQ3-HJ0Y1QW4-Plz9Hq3elk-ZOun-8fl7TrTnJQxy5u6UKYgohaKCZ5LKZjWdbPgNCeCyRpKzpVKMwCQhnLWCMK5oVxrXhjJ-BxdHXxTs_ddKltt3c7bFFkxxolYlJIWiUUOLO1dCB5MNaSNUpuKkmqau_o7d5JkB0lQG_g1_Zf_DXN8gbQ</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Aminaei, Hamzeh</creator><creator>Dehghan Manshadi, Mojtaba</creator><creator>Mostofizadeh, Ali Reza</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2143-0670</orcidid></search><sort><creationdate>201906</creationdate><title>Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number</title><author>Aminaei, Hamzeh ; Dehghan Manshadi, Mojtaba ; Mostofizadeh, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Boundary layer transition</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Incidence angle</topic><topic>Orifices</topic><topic>Pressure distribution</topic><topic>Propeller slipstreams</topic><topic>Reynolds number</topic><topic>Slipstreams</topic><topic>Statistical analysis</topic><topic>Stress concentration</topic><topic>Turbulent flow</topic><topic>Wing loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aminaei, Hamzeh</creatorcontrib><creatorcontrib>Dehghan Manshadi, Mojtaba</creatorcontrib><creatorcontrib>Mostofizadeh, Ali Reza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aminaei, Hamzeh</au><au>Dehghan Manshadi, Mojtaba</au><au>Mostofizadeh, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2019-06</date><risdate>2019</risdate><volume>233</volume><issue>8</issue><spage>3033</spage><epage>3041</epage><pages>3033-3041</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>In this research, an experimental investigation was conducted to predict the Laminar-turbulent transition over the wing surface. Furthermore, the effects of a tractor propeller slipstream on both wing aerodynamics and transition front were studied. For tests, a rectangular wing was used with a NACA 6-series airfoil section and with a total of 22 pressure orifices. Unsteady pressure measurements were performed over the upper and lower surfaces of the wing in different spanwise locations at different incidence angles. Existence of propeller slipstream changed pressure distribution over the wing surfaces, in both chordwise and spanwise directions and hence affected the wing loading distribution. Statistical analysis of pressure signals was used to predict the boundary layer transition over the wing by computing the root mean square and skewness of the pressure data. The results showed that the transition location moves toward the leading edge due to propeller slipstream. Increase in propeller rotational speed causes that the turbulent flow covers whole portion of the wing surface.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410018793703</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2143-0670</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-06, Vol.233 (8), p.3033-3041
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_journals_2230589716
source IMechE Titles Via Sage
subjects Aerodynamics
Boundary layer transition
Computational fluid dynamics
Fluid flow
Incidence angle
Orifices
Pressure distribution
Propeller slipstreams
Reynolds number
Slipstreams
Statistical analysis
Stress concentration
Turbulent flow
Wing loading
title Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20propeller%20slipstream%20effects%20on%20the%20wing%20aerodynamics%20and%20boundary%20layer%20treatment%20at%20low%20Reynolds%20number&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Aminaei,%20Hamzeh&rft.date=2019-06&rft.volume=233&rft.issue=8&rft.spage=3033&rft.epage=3041&rft.pages=3033-3041&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410018793703&rft_dat=%3Cproquest_cross%3E2230589716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-4db6af605b5a25347752ccbd83140527be933aa001ee0d132d5033f13cc36f723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230589716&rft_id=info:pmid/&rft_sage_id=10.1177_0954410018793703&rfr_iscdi=true