Loading…

The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions

In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 wer...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied climatology 2019-11, Vol.138 (3-4), p.1375-1394
Main Authors: Maghrabi, A. H., Almutayri, M. M., Aldosary, A. F., Allehyani, B. I., Aldakhil, A. A., Aljarba, G. A., Altilasi, M. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573
cites cdi_FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573
container_end_page 1394
container_issue 3-4
container_start_page 1375
container_title Theoretical and applied climatology
container_volume 138
creator Maghrabi, A. H.
Almutayri, M. M.
Aldosary, A. F.
Allehyani, B. I.
Aldakhil, A. A.
Aljarba, G. A.
Altilasi, M. I.
description In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 were used to study their variations and to investigate the influence of the meteorological variables on the measured downward LW radiation under clear sky conditions. Downward LW radiation and the air temperature have the same distributions. While the outgoing LW radiation and the Ångstrom exponent presented more than one peak in their distributions, the PWV was normally distributed with a mean value of about 11.9 ± 3.9 mm. Distribution of the AOD for all wavelengths has a log-normal shape. Theoretical simulations using SBDART code were conducted and showed that the downward LW radiative forcing increases by about 8% for every 1 mm increases in the water vapor, while it increases by about 4% in every 1 increase in the AOD at 500 nm value. Two variable models containing the PWV and T were developed to model the downward LW radiation. This model has a correlation coefficient of 0.91, MBE = − 0.004 W m −2 , RMSE = 20.4 W m −2 , and MPE = − 0.30%. Likewise, correlation analyses between the downward LW radiation and three independent variables (T, PWV, and AOD at 500 nm) were carried out. This model slightly improves the prediction of the LW radiation and has correlation coefficient of 0.93, MBE = 0.1 W m −2 , RMSE = 17.3 W m −2 , and MPE = − 0.20%.
doi_str_mv 10.1007/s00704-019-02903-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2231158821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604822822</galeid><sourcerecordid>A604822822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573</originalsourceid><addsrcrecordid>eNp9UU1r3DAQNaWFbtP8gZ4EPRXiVF-27GMIbRIIBNoUchOz0nhXwSu5ktzN3vvDq40LJZeOhhGM3hsN71XVB0bPGaXqcyqFypqyvqa8p6I-vKpWTApZS9mJ19WKMqVq1XcPb6t3KT1SSnnbqlX1-36LxPlhnNEbJGEgkHchTVuMzpA9ZIzEBJ_R5zOScTdhhDxHPCPgLQGMIYWRhCk7AyOxOOUtCZ7YsPd7iJaMwW_28AtJBOsgu_LmPIHo7HGsdcdOel-9GWBMePr3Pql-fP1yf3ld395d3Vxe3NZG9DzX3DZW9hYaWcIMlkljeTsIg-tm6BtQLQUp1sagEsIYRUVDoWvkmrd2rRolTqqPy9wphp8zpqwfwxx9-VJzLhhruo6zgjpfUBsYURdtQo5gyrG4c2VpHFzpX7RUdpyXLIRPLwjPej3lDcwp6Zvv315i-YI1RbkUcdBTdDuIB82oPlqpFyt1sVI_W6kPhSQWUipgv8H4b-__sP4ATSKjrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231158821</pqid></control><display><type>article</type><title>The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions</title><source>Springer Link</source><creator>Maghrabi, A. H. ; Almutayri, M. M. ; Aldosary, A. F. ; Allehyani, B. I. ; Aldakhil, A. A. ; Aljarba, G. A. ; Altilasi, M. I.</creator><creatorcontrib>Maghrabi, A. H. ; Almutayri, M. M. ; Aldosary, A. F. ; Allehyani, B. I. ; Aldakhil, A. A. ; Aljarba, G. A. ; Altilasi, M. I.</creatorcontrib><description>In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 were used to study their variations and to investigate the influence of the meteorological variables on the measured downward LW radiation under clear sky conditions. Downward LW radiation and the air temperature have the same distributions. While the outgoing LW radiation and the Ångstrom exponent presented more than one peak in their distributions, the PWV was normally distributed with a mean value of about 11.9 ± 3.9 mm. Distribution of the AOD for all wavelengths has a log-normal shape. Theoretical simulations using SBDART code were conducted and showed that the downward LW radiative forcing increases by about 8% for every 1 mm increases in the water vapor, while it increases by about 4% in every 1 increase in the AOD at 500 nm value. Two variable models containing the PWV and T were developed to model the downward LW radiation. This model has a correlation coefficient of 0.91, MBE = − 0.004 W m −2 , RMSE = 20.4 W m −2 , and MPE = − 0.30%. Likewise, correlation analyses between the downward LW radiation and three independent variables (T, PWV, and AOD at 500 nm) were carried out. This model slightly improves the prediction of the LW radiation and has correlation coefficient of 0.93, MBE = 0.1 W m −2 , RMSE = 17.3 W m −2 , and MPE = − 0.20%.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-019-02903-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerosol optical depth ; Aerosols ; Air temperature ; Analysis ; Aquatic Pollution ; Aridity ; Atmosphere ; Atmospheric aerosols ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospheric water ; Carbon dioxide ; Climate science ; Climatology ; Computer simulation ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Greenhouse gases ; Independent variables ; Long wave radiation ; Measuring instruments ; Moisture content ; Optical analysis ; Original Paper ; Physical properties ; Precipitable water ; Radiation ; Radiation measurement ; Radiative forcing ; Simulation ; Sky ; Temperature effects ; Variables ; Waste Water Technology ; Water content ; Water depth ; Water Management ; Water Pollution Control ; Water temperature ; Water vapor ; Water vapour ; Wavelengths</subject><ispartof>Theoretical and applied climatology, 2019-11, Vol.138 (3-4), p.1375-1394</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573</citedby><cites>FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maghrabi, A. H.</creatorcontrib><creatorcontrib>Almutayri, M. M.</creatorcontrib><creatorcontrib>Aldosary, A. F.</creatorcontrib><creatorcontrib>Allehyani, B. I.</creatorcontrib><creatorcontrib>Aldakhil, A. A.</creatorcontrib><creatorcontrib>Aljarba, G. A.</creatorcontrib><creatorcontrib>Altilasi, M. I.</creatorcontrib><title>The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 were used to study their variations and to investigate the influence of the meteorological variables on the measured downward LW radiation under clear sky conditions. Downward LW radiation and the air temperature have the same distributions. While the outgoing LW radiation and the Ångstrom exponent presented more than one peak in their distributions, the PWV was normally distributed with a mean value of about 11.9 ± 3.9 mm. Distribution of the AOD for all wavelengths has a log-normal shape. Theoretical simulations using SBDART code were conducted and showed that the downward LW radiative forcing increases by about 8% for every 1 mm increases in the water vapor, while it increases by about 4% in every 1 increase in the AOD at 500 nm value. Two variable models containing the PWV and T were developed to model the downward LW radiation. This model has a correlation coefficient of 0.91, MBE = − 0.004 W m −2 , RMSE = 20.4 W m −2 , and MPE = − 0.30%. Likewise, correlation analyses between the downward LW radiation and three independent variables (T, PWV, and AOD at 500 nm) were carried out. This model slightly improves the prediction of the LW radiation and has correlation coefficient of 0.93, MBE = 0.1 W m −2 , RMSE = 17.3 W m −2 , and MPE = − 0.20%.</description><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Air temperature</subject><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Aridity</subject><subject>Atmosphere</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric water</subject><subject>Carbon dioxide</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Greenhouse gases</subject><subject>Independent variables</subject><subject>Long wave radiation</subject><subject>Measuring instruments</subject><subject>Moisture content</subject><subject>Optical analysis</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Precipitable water</subject><subject>Radiation</subject><subject>Radiation measurement</subject><subject>Radiative forcing</subject><subject>Simulation</subject><subject>Sky</subject><subject>Temperature effects</subject><subject>Variables</subject><subject>Waste Water Technology</subject><subject>Water content</subject><subject>Water depth</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water temperature</subject><subject>Water vapor</subject><subject>Water vapour</subject><subject>Wavelengths</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQNaWFbtP8gZ4EPRXiVF-27GMIbRIIBNoUchOz0nhXwSu5ktzN3vvDq40LJZeOhhGM3hsN71XVB0bPGaXqcyqFypqyvqa8p6I-vKpWTApZS9mJ19WKMqVq1XcPb6t3KT1SSnnbqlX1-36LxPlhnNEbJGEgkHchTVuMzpA9ZIzEBJ_R5zOScTdhhDxHPCPgLQGMIYWRhCk7AyOxOOUtCZ7YsPd7iJaMwW_28AtJBOsgu_LmPIHo7HGsdcdOel-9GWBMePr3Pql-fP1yf3ld395d3Vxe3NZG9DzX3DZW9hYaWcIMlkljeTsIg-tm6BtQLQUp1sagEsIYRUVDoWvkmrd2rRolTqqPy9wphp8zpqwfwxx9-VJzLhhruo6zgjpfUBsYURdtQo5gyrG4c2VpHFzpX7RUdpyXLIRPLwjPej3lDcwp6Zvv315i-YI1RbkUcdBTdDuIB82oPlqpFyt1sVI_W6kPhSQWUipgv8H4b-__sP4ATSKjrg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Maghrabi, A. H.</creator><creator>Almutayri, M. M.</creator><creator>Aldosary, A. F.</creator><creator>Allehyani, B. I.</creator><creator>Aldakhil, A. A.</creator><creator>Aljarba, G. A.</creator><creator>Altilasi, M. I.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions</title><author>Maghrabi, A. H. ; Almutayri, M. M. ; Aldosary, A. F. ; Allehyani, B. I. ; Aldakhil, A. A. ; Aljarba, G. A. ; Altilasi, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Air temperature</topic><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Aridity</topic><topic>Atmosphere</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric water</topic><topic>Carbon dioxide</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Greenhouse gases</topic><topic>Independent variables</topic><topic>Long wave radiation</topic><topic>Measuring instruments</topic><topic>Moisture content</topic><topic>Optical analysis</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Precipitable water</topic><topic>Radiation</topic><topic>Radiation measurement</topic><topic>Radiative forcing</topic><topic>Simulation</topic><topic>Sky</topic><topic>Temperature effects</topic><topic>Variables</topic><topic>Waste Water Technology</topic><topic>Water content</topic><topic>Water depth</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water temperature</topic><topic>Water vapor</topic><topic>Water vapour</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maghrabi, A. H.</creatorcontrib><creatorcontrib>Almutayri, M. M.</creatorcontrib><creatorcontrib>Aldosary, A. F.</creatorcontrib><creatorcontrib>Allehyani, B. I.</creatorcontrib><creatorcontrib>Aldakhil, A. A.</creatorcontrib><creatorcontrib>Aljarba, G. A.</creatorcontrib><creatorcontrib>Altilasi, M. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maghrabi, A. H.</au><au>Almutayri, M. M.</au><au>Aldosary, A. F.</au><au>Allehyani, B. I.</au><au>Aldakhil, A. A.</au><au>Aljarba, G. A.</au><au>Altilasi, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>138</volume><issue>3-4</issue><spage>1375</spage><epage>1394</epage><pages>1375-1394</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>In this study, downward (LW) and outgoing longwave radiation measurements, air temperature (T), aerosol optical depth (AOD) at seven wavelengths, Ångstrom exponent (α), and precipitable water vapor (PWV) data from Riyadh, an arid site in central Saudi Arabia, for the period between 2014 and 2016 were used to study their variations and to investigate the influence of the meteorological variables on the measured downward LW radiation under clear sky conditions. Downward LW radiation and the air temperature have the same distributions. While the outgoing LW radiation and the Ångstrom exponent presented more than one peak in their distributions, the PWV was normally distributed with a mean value of about 11.9 ± 3.9 mm. Distribution of the AOD for all wavelengths has a log-normal shape. Theoretical simulations using SBDART code were conducted and showed that the downward LW radiative forcing increases by about 8% for every 1 mm increases in the water vapor, while it increases by about 4% in every 1 increase in the AOD at 500 nm value. Two variable models containing the PWV and T were developed to model the downward LW radiation. This model has a correlation coefficient of 0.91, MBE = − 0.004 W m −2 , RMSE = 20.4 W m −2 , and MPE = − 0.30%. Likewise, correlation analyses between the downward LW radiation and three independent variables (T, PWV, and AOD at 500 nm) were carried out. This model slightly improves the prediction of the LW radiation and has correlation coefficient of 0.93, MBE = 0.1 W m −2 , RMSE = 17.3 W m −2 , and MPE = − 0.20%.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-019-02903-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2019-11, Vol.138 (3-4), p.1375-1394
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2231158821
source Springer Link
subjects Aerosol optical depth
Aerosols
Air temperature
Analysis
Aquatic Pollution
Aridity
Atmosphere
Atmospheric aerosols
Atmospheric models
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Atmospheric water
Carbon dioxide
Climate science
Climatology
Computer simulation
Correlation analysis
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Greenhouse gases
Independent variables
Long wave radiation
Measuring instruments
Moisture content
Optical analysis
Original Paper
Physical properties
Precipitable water
Radiation
Radiation measurement
Radiative forcing
Simulation
Sky
Temperature effects
Variables
Waste Water Technology
Water content
Water depth
Water Management
Water Pollution Control
Water temperature
Water vapor
Water vapour
Wavelengths
title The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20atmospheric%20water%20content,%20temperature,%20and%20aerosol%20optical%20depth%20on%20downward%20longwave%20radiation%20in%20arid%20conditions&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Maghrabi,%20A.%20H.&rft.date=2019-11-01&rft.volume=138&rft.issue=3-4&rft.spage=1375&rft.epage=1394&rft.pages=1375-1394&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-019-02903-y&rft_dat=%3Cgale_proqu%3EA604822822%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-2d5d49da54444cfd14cd26f3ceb5f95a760a43bcce733cc70350a854b26db7573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231158821&rft_id=info:pmid/&rft_galeid=A604822822&rfr_iscdi=true