Loading…

Testing the Validity of Automatic Speech Recognition for Political Text Analysis

The analysis of political texts from parliamentary speeches, party manifestos, social media, or press releases forms the basis of major and growing fields in political science, not least since advances in “text-as-data” methods have rendered the analysis of large text corpora straightforward. Howeve...

Full description

Saved in:
Bibliographic Details
Published in:Political analysis 2019-07, Vol.27 (3), p.339-359
Main Authors: Proksch, Sven-Oliver, Wratil, Christopher, Wäckerle, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analysis of political texts from parliamentary speeches, party manifestos, social media, or press releases forms the basis of major and growing fields in political science, not least since advances in “text-as-data” methods have rendered the analysis of large text corpora straightforward. However, a lot of sources of political speech are not regularly transcribed, and their on-demand transcription by humans is prohibitively expensive for research purposes. This class includes political speech in certain legislatures, during political party conferences as well as television interviews and talk shows. We showcase how scholars can use automatic speech recognition systems to analyze such speech with quantitative text analysis models of the “bag-of-words” variety. To probe results for robustness to transcription error, we present an original “word error rate simulation” (WERSIM) procedure implemented in $R$ . We demonstrate the potential of automatic speech recognition to address open questions in political science with two substantive applications and discuss its limitations and practical challenges.
ISSN:1047-1987
1476-4989
DOI:10.1017/pan.2018.62