Loading…

The Octagon as a Determinant

The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor - the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Kostov, Ivan, Petkova, Valentina B, Serban, Didina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kostov, Ivan
Petkova, Valentina B
Serban, Didina
description The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor - the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.
doi_str_mv 10.48550/arxiv.1905.11467
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2231643447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231643447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-6d2325ef0750e0e9825ec68d4b552e76c2ad802c351e6b2bda461a5669a4fd2e3</originalsourceid><addsrcrecordid>eNotjU1Lw0AQQBdBsNT-AMFDwHPi7OzO7OYo9RMKveReJtmJtmii2VT8-Rb09HiX94y5slD5SAS3Mv3svytbA1XWeg5nZoHO2TJ6xAuzyvkAAMgBidzCXDdvWmy7WV7HoZBcSHGvs04f-0GG-dKc9_KedfXPpWkeH5r1c7nZPr2s7zalEIaSEzok7SEQKGgdT9JxTL4lQg3coaQI2Dmyyi22STxbIeZafJ9Q3dLc_GU_p_HrqHneHcbjNJyOO0Rn2Tvvg_sFdME8iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231643447</pqid></control><display><type>article</type><title>The Octagon as a Determinant</title><source>Publicly Available Content Database</source><creator>Kostov, Ivan ; Petkova, Valentina B ; Serban, Didina</creator><creatorcontrib>Kostov, Ivan ; Petkova, Valentina B ; Serban, Didina</creatorcontrib><description>The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor - the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.11467</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bosons ; Computation ; Fermions ; Feynman diagrams ; Form factors ; Graphical representations ; Mathematical analysis ; Matrix methods ; Operators (mathematics)</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2231643447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25728,27899,36986,44563</link.rule.ids></links><search><creatorcontrib>Kostov, Ivan</creatorcontrib><creatorcontrib>Petkova, Valentina B</creatorcontrib><creatorcontrib>Serban, Didina</creatorcontrib><title>The Octagon as a Determinant</title><title>arXiv.org</title><description>The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor - the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.</description><subject>Bosons</subject><subject>Computation</subject><subject>Fermions</subject><subject>Feynman diagrams</subject><subject>Form factors</subject><subject>Graphical representations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Lw0AQQBdBsNT-AMFDwHPi7OzO7OYo9RMKveReJtmJtmii2VT8-Rb09HiX94y5slD5SAS3Mv3svytbA1XWeg5nZoHO2TJ6xAuzyvkAAMgBidzCXDdvWmy7WV7HoZBcSHGvs04f-0GG-dKc9_KedfXPpWkeH5r1c7nZPr2s7zalEIaSEzok7SEQKGgdT9JxTL4lQg3coaQI2Dmyyi22STxbIeZafJ9Q3dLc_GU_p_HrqHneHcbjNJyOO0Rn2Tvvg_sFdME8iw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Kostov, Ivan</creator><creator>Petkova, Valentina B</creator><creator>Serban, Didina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191015</creationdate><title>The Octagon as a Determinant</title><author>Kostov, Ivan ; Petkova, Valentina B ; Serban, Didina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-6d2325ef0750e0e9825ec68d4b552e76c2ad802c351e6b2bda461a5669a4fd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bosons</topic><topic>Computation</topic><topic>Fermions</topic><topic>Feynman diagrams</topic><topic>Form factors</topic><topic>Graphical representations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kostov, Ivan</creatorcontrib><creatorcontrib>Petkova, Valentina B</creatorcontrib><creatorcontrib>Serban, Didina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostov, Ivan</au><au>Petkova, Valentina B</au><au>Serban, Didina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Octagon as a Determinant</atitle><jtitle>arXiv.org</jtitle><date>2019-10-15</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor - the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.11467</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2231643447
source Publicly Available Content Database
subjects Bosons
Computation
Fermions
Feynman diagrams
Form factors
Graphical representations
Mathematical analysis
Matrix methods
Operators (mathematics)
title The Octagon as a Determinant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T21%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Octagon%20as%20a%20Determinant&rft.jtitle=arXiv.org&rft.au=Kostov,%20Ivan&rft.date=2019-10-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.11467&rft_dat=%3Cproquest%3E2231643447%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-6d2325ef0750e0e9825ec68d4b552e76c2ad802c351e6b2bda461a5669a4fd2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231643447&rft_id=info:pmid/&rfr_iscdi=true