Loading…
On the Sensitivity of Nanogripper-Carbon Nanotube Friction to Contact Area
Despite the large volume of research dedicated to the structure and functioning of nano- electromechanical systems, few researchers have addressed the practical problems involved in their manufacture and manipulation. This paper investigates the friction phenomenon in Carbon Nanotubes (CNTs) being g...
Saved in:
Published in: | E-journal of surface science and nanotechnology 2017/08/05, Vol.15, pp.81-86 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the large volume of research dedicated to the structure and functioning of nano- electromechanical systems, few researchers have addressed the practical problems involved in their manufacture and manipulation. This paper investigates the friction phenomenon in Carbon Nanotubes (CNTs) being grasped/manipulated by a nanogripper. Molecular Dynamics (MD) simulations are employed to model the combination of friction and molecular adhesion that governs the mechanical behavior of a CNT when subjected to various loads from the gripper. It is shown that for a certain gripping force, friction between the CNT and the gripper is nonlinearly proportional to the contact area up to a certain value, and remains unchanged afterwards. This is contrary to the common belief that any amount of friction force required for detaching/relocating of CNTs could be achieved by increasing the gripping force. The implications of this finding could affect the way nanogrippers are designed for the construction/manipulation of nanoparticles. [DOI: 10.1380/ejssnt.2017.81] |
---|---|
ISSN: | 1348-0391 1348-0391 |
DOI: | 10.1380/ejssnt.2017.81 |