Loading…
Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions
Inspired by the idea of multiple Lyapunov functions (\mathtt {MLFs}), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of \mathtt {MLFs} with the existence o...
Saved in:
Published in: | IEEE transactions on automatic control 2019-06, Vol.64 (6), p.2637-2644 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3 |
container_end_page | 2644 |
container_issue | 6 |
container_start_page | 2637 |
container_title | IEEE transactions on automatic control |
container_volume | 64 |
creator | Lu, Junjie She, Zhikun Feng, Weijie Ge, Shuzhi Sam |
description | Inspired by the idea of multiple Lyapunov functions (\mathtt {MLFs}), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of \mathtt {MLFs} with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of \mathtt {MLFs}. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems. |
doi_str_mv | 10.1109/TAC.2018.2867933 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231869004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8451960</ieee_id><sourcerecordid>2231869004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrd4FLwHPW5PNZpsc62JVKChs9RrS7ERT2k3dZCn11ze1xcvMPN6br4fQLSUjSol8mE-qUU6oGOWiHEvGztCAci6ynOfsHA1IojKZuEt0FcIywbIo6ACpOuqFW7nfvxh32Fs8d2vIPnW3c-0Xrrcumm9ocL0LEdYBP-qQkG_xuwMDWxcAV76Nru19H3Bt9Ep3eNq3Jjrfhmt0YfUqwM0pD9HH9GlevWSzt-fXajLLTC5pzEpYcGqttKU0zI6llEQ31nDKwIqCN6Qx44WwDTdUUA3MCpvKpiFaGLDcsiG6P87ddP6nhxDV0vddm1aqPGdUlJKQIqnIUWU6H0IHVm06t06fKkrUwUaVbFQHG9XJxtRyd2xxAPAvTzdRWRK2BwD0cE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231869004</pqid></control><display><type>article</type><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</creator><creatorcontrib>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</creatorcontrib><description><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2867933</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Asymptotic stability ; Continuity (mathematics) ; Liapunov functions ; Linear systems ; Nonlinear systems ; Piecewise continuous scalar functions ; Stability analysis ; stabilizability ; Switched systems ; Switches ; time-varying systems</subject><ispartof>IEEE transactions on automatic control, 2019-06, Vol.64 (6), p.2637-2644</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</citedby><cites>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</cites><orcidid>0000-0002-6309-9648 ; 0000-0002-6361-5665 ; 0000-0003-2762-8730 ; 0000-0001-5549-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8451960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>She, Zhikun</creatorcontrib><creatorcontrib>Feng, Weijie</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></description><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Continuity (mathematics)</subject><subject>Liapunov functions</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Piecewise continuous scalar functions</subject><subject>Stability analysis</subject><subject>stabilizability</subject><subject>Switched systems</subject><subject>Switches</subject><subject>time-varying systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgrd4FLwHPW5PNZpsc62JVKChs9RrS7ERT2k3dZCn11ze1xcvMPN6br4fQLSUjSol8mE-qUU6oGOWiHEvGztCAci6ynOfsHA1IojKZuEt0FcIywbIo6ACpOuqFW7nfvxh32Fs8d2vIPnW3c-0Xrrcumm9ocL0LEdYBP-qQkG_xuwMDWxcAV76Nru19H3Bt9Ep3eNq3Jjrfhmt0YfUqwM0pD9HH9GlevWSzt-fXajLLTC5pzEpYcGqttKU0zI6llEQ31nDKwIqCN6Qx44WwDTdUUA3MCpvKpiFaGLDcsiG6P87ddP6nhxDV0vddm1aqPGdUlJKQIqnIUWU6H0IHVm06t06fKkrUwUaVbFQHG9XJxtRyd2xxAPAvTzdRWRK2BwD0cE0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Lu, Junjie</creator><creator>She, Zhikun</creator><creator>Feng, Weijie</creator><creator>Ge, Shuzhi Sam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6309-9648</orcidid><orcidid>https://orcid.org/0000-0002-6361-5665</orcidid><orcidid>https://orcid.org/0000-0003-2762-8730</orcidid><orcidid>https://orcid.org/0000-0001-5549-312X</orcidid></search><sort><creationdate>20190601</creationdate><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><author>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Continuity (mathematics)</topic><topic>Liapunov functions</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Piecewise continuous scalar functions</topic><topic>Stability analysis</topic><topic>stabilizability</topic><topic>Switched systems</topic><topic>Switches</topic><topic>time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>She, Zhikun</creatorcontrib><creatorcontrib>Feng, Weijie</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Junjie</au><au>She, Zhikun</au><au>Feng, Weijie</au><au>Ge, Shuzhi Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>64</volume><issue>6</issue><spage>2637</spage><epage>2644</epage><pages>2637-2644</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2867933</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6309-9648</orcidid><orcidid>https://orcid.org/0000-0002-6361-5665</orcidid><orcidid>https://orcid.org/0000-0003-2762-8730</orcidid><orcidid>https://orcid.org/0000-0001-5549-312X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2019-06, Vol.64 (6), p.2637-2644 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2231869004 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Asymptotic properties Asymptotic stability Continuity (mathematics) Liapunov functions Linear systems Nonlinear systems Piecewise continuous scalar functions Stability analysis stabilizability Switched systems Switches time-varying systems |
title | Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizability%20of%20Time-Varying%20Switched%20Systems%20Based%20on%20Piecewise%20Continuous%20Scalar%20Functions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lu,%20Junjie&rft.date=2019-06-01&rft.volume=64&rft.issue=6&rft.spage=2637&rft.epage=2644&rft.pages=2637-2644&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2867933&rft_dat=%3Cproquest_cross%3E2231869004%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231869004&rft_id=info:pmid/&rft_ieee_id=8451960&rfr_iscdi=true |