Loading…

Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions

Inspired by the idea of multiple Lyapunov functions (\mathtt {MLFs}), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of \mathtt {MLFs} with the existence o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2019-06, Vol.64 (6), p.2637-2644
Main Authors: Lu, Junjie, She, Zhikun, Feng, Weijie, Ge, Shuzhi Sam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3
cites cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3
container_end_page 2644
container_issue 6
container_start_page 2637
container_title IEEE transactions on automatic control
container_volume 64
creator Lu, Junjie
She, Zhikun
Feng, Weijie
Ge, Shuzhi Sam
description Inspired by the idea of multiple Lyapunov functions (\mathtt {MLFs}), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of \mathtt {MLFs} with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of \mathtt {MLFs}. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.
doi_str_mv 10.1109/TAC.2018.2867933
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231869004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8451960</ieee_id><sourcerecordid>2231869004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrd4FLwHPW5PNZpsc62JVKChs9RrS7ERT2k3dZCn11ze1xcvMPN6br4fQLSUjSol8mE-qUU6oGOWiHEvGztCAci6ynOfsHA1IojKZuEt0FcIywbIo6ACpOuqFW7nfvxh32Fs8d2vIPnW3c-0Xrrcumm9ocL0LEdYBP-qQkG_xuwMDWxcAV76Nru19H3Bt9Ep3eNq3Jjrfhmt0YfUqwM0pD9HH9GlevWSzt-fXajLLTC5pzEpYcGqttKU0zI6llEQ31nDKwIqCN6Qx44WwDTdUUA3MCpvKpiFaGLDcsiG6P87ddP6nhxDV0vddm1aqPGdUlJKQIqnIUWU6H0IHVm06t06fKkrUwUaVbFQHG9XJxtRyd2xxAPAvTzdRWRK2BwD0cE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231869004</pqid></control><display><type>article</type><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</creator><creatorcontrib>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</creatorcontrib><description><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2867933</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Asymptotic stability ; Continuity (mathematics) ; Liapunov functions ; Linear systems ; Nonlinear systems ; Piecewise continuous scalar functions ; Stability analysis ; stabilizability ; Switched systems ; Switches ; time-varying systems</subject><ispartof>IEEE transactions on automatic control, 2019-06, Vol.64 (6), p.2637-2644</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</citedby><cites>FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</cites><orcidid>0000-0002-6309-9648 ; 0000-0002-6361-5665 ; 0000-0003-2762-8730 ; 0000-0001-5549-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8451960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>She, Zhikun</creatorcontrib><creatorcontrib>Feng, Weijie</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></description><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Continuity (mathematics)</subject><subject>Liapunov functions</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Piecewise continuous scalar functions</subject><subject>Stability analysis</subject><subject>stabilizability</subject><subject>Switched systems</subject><subject>Switches</subject><subject>time-varying systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgrd4FLwHPW5PNZpsc62JVKChs9RrS7ERT2k3dZCn11ze1xcvMPN6br4fQLSUjSol8mE-qUU6oGOWiHEvGztCAci6ynOfsHA1IojKZuEt0FcIywbIo6ACpOuqFW7nfvxh32Fs8d2vIPnW3c-0Xrrcumm9ocL0LEdYBP-qQkG_xuwMDWxcAV76Nru19H3Bt9Ep3eNq3Jjrfhmt0YfUqwM0pD9HH9GlevWSzt-fXajLLTC5pzEpYcGqttKU0zI6llEQ31nDKwIqCN6Qx44WwDTdUUA3MCpvKpiFaGLDcsiG6P87ddP6nhxDV0vddm1aqPGdUlJKQIqnIUWU6H0IHVm06t06fKkrUwUaVbFQHG9XJxtRyd2xxAPAvTzdRWRK2BwD0cE0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Lu, Junjie</creator><creator>She, Zhikun</creator><creator>Feng, Weijie</creator><creator>Ge, Shuzhi Sam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6309-9648</orcidid><orcidid>https://orcid.org/0000-0002-6361-5665</orcidid><orcidid>https://orcid.org/0000-0003-2762-8730</orcidid><orcidid>https://orcid.org/0000-0001-5549-312X</orcidid></search><sort><creationdate>20190601</creationdate><title>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</title><author>Lu, Junjie ; She, Zhikun ; Feng, Weijie ; Ge, Shuzhi Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Continuity (mathematics)</topic><topic>Liapunov functions</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Piecewise continuous scalar functions</topic><topic>Stability analysis</topic><topic>stabilizability</topic><topic>Switched systems</topic><topic>Switches</topic><topic>time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>She, Zhikun</creatorcontrib><creatorcontrib>Feng, Weijie</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Junjie</au><au>She, Zhikun</au><au>Feng, Weijie</au><au>Ge, Shuzhi Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>64</volume><issue>6</issue><spage>2637</spage><epage>2644</epage><pages>2637-2644</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[Inspired by the idea of multiple Lyapunov functions (<inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>), we use piecewise continuous scalar functions to investigate the stabilizability of time-varying switched systems. Starting with time-varying switched linear systems, we first combine the idea of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula> with the existence of asymptotically (exponentially, uniformly exponentially) stable functions to provide necessary and sufficient conditions for their asymptotic (exponential, uniform exponential) stabilizability. Compared to traditional differential Lyapunov inequalities, we release the requirement on negative definiteness of the derivatives of <inline-formula><tex-math notation="LaTeX">\mathtt {MLFs}</tex-math></inline-formula>. Successively, the above results are extended to time-varying switched nonlinear systems. Then, two illustrative examples are given to show the applicability of our theoretical results. In the end, we consider the computation issue of our current results for a special class of nonautonomous switched systems, i.e., rational nonautonomous switched systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2867933</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6309-9648</orcidid><orcidid>https://orcid.org/0000-0002-6361-5665</orcidid><orcidid>https://orcid.org/0000-0003-2762-8730</orcidid><orcidid>https://orcid.org/0000-0001-5549-312X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2019-06, Vol.64 (6), p.2637-2644
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2231869004
source IEEE Electronic Library (IEL) Journals
subjects Asymptotic properties
Asymptotic stability
Continuity (mathematics)
Liapunov functions
Linear systems
Nonlinear systems
Piecewise continuous scalar functions
Stability analysis
stabilizability
Switched systems
Switches
time-varying systems
title Stabilizability of Time-Varying Switched Systems Based on Piecewise Continuous Scalar Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizability%20of%20Time-Varying%20Switched%20Systems%20Based%20on%20Piecewise%20Continuous%20Scalar%20Functions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lu,%20Junjie&rft.date=2019-06-01&rft.volume=64&rft.issue=6&rft.spage=2637&rft.epage=2644&rft.pages=2637-2644&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2867933&rft_dat=%3Cproquest_cross%3E2231869004%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-6eb51ff9f69c3f79990adfc513ef845d0dc7b8fd5c181ae3f8f5c1dd0a8cef5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231869004&rft_id=info:pmid/&rft_ieee_id=8451960&rfr_iscdi=true