Loading…

Soft decision optimization method for robust fundamental matrix estimation

It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although thes...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications 2019-06, Vol.30 (4), p.657-669
Main Authors: Xiao, Chun-Bao, Feng, Da-Zheng, Yuan, Ming-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3
cites cdi_FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3
container_end_page 669
container_issue 4
container_start_page 657
container_title Machine vision and applications
container_volume 30
creator Xiao, Chun-Bao
Feng, Da-Zheng
Yuan, Ming-Dong
description It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although these methods are simple to implement, their performance may be relatively low in the presence of gross outliers. By exploiting such coupled relation, the soft decision optimization method is proposed in this paper to estimate the fundamental matrix and find the inlier correspondence set together. Combing feature matching and fundamental matrix estimation, a soft decision objective function is developed to automatically remove the interference of the outliers in the candidate correspondence set. Moreover, an efficient expectation–maximization algorithm is established to find the solution to the fundamental matrix and the inlier correspondence set. Experiments on both synthesized data and real images show that the proposed method can cope with large noise and high ratio of outliers and is superior to some state-of-the-art robust methods in precision, recall, and residual error.
doi_str_mv 10.1007/s00138-019-01019-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231978974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231978974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHPq5MPM5ujFLVKwYN6DvuR6JbupiZZUH-9aVfw5mG-mPfmDY-QcwaXDACvIgATZQFM59hlPCAzJgUvGCp9SGagc1-C5sfkJMY1AEhEOSOPz94l2tqmi50fqN-mru--q7QbepvefUudDzT4eoyJunFoq94OqdrQvkqh-6Q2ZsYef0qOXLWJ9uy3zsnr3e3LYlmsnu4fFjerohFMp8IKgbZuLfKSiwZ446xqrHBKKbxWFdO25ZKVXDqQSkGdFxw5aoeaCdbUYk4uprvb4D_GrG_WfgxDljScZwksNcqM4hOqCT7GYJ3Zhvxo-DIMzM4zM3lmsltm75nBTBITKWbw8GbD3-l_WD_RVW9C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231978974</pqid></control><display><type>article</type><title>Soft decision optimization method for robust fundamental matrix estimation</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Xiao, Chun-Bao ; Feng, Da-Zheng ; Yuan, Ming-Dong</creator><creatorcontrib>Xiao, Chun-Bao ; Feng, Da-Zheng ; Yuan, Ming-Dong</creatorcontrib><description>It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although these methods are simple to implement, their performance may be relatively low in the presence of gross outliers. By exploiting such coupled relation, the soft decision optimization method is proposed in this paper to estimate the fundamental matrix and find the inlier correspondence set together. Combing feature matching and fundamental matrix estimation, a soft decision objective function is developed to automatically remove the interference of the outliers in the candidate correspondence set. Moreover, an efficient expectation–maximization algorithm is established to find the solution to the fundamental matrix and the inlier correspondence set. Experiments on both synthesized data and real images show that the proposed method can cope with large noise and high ratio of outliers and is superior to some state-of-the-art robust methods in precision, recall, and residual error.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-019-01019-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Communications Engineering ; Computer Science ; Computer vision ; Image Processing and Computer Vision ; Matching ; Methods ; Networks ; Optimization ; Original Paper ; Outliers (statistics) ; Pattern Recognition ; Robustness ; Vision systems</subject><ispartof>Machine vision and applications, 2019-06, Vol.30 (4), p.657-669</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3</citedby><cites>FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xiao, Chun-Bao</creatorcontrib><creatorcontrib>Feng, Da-Zheng</creatorcontrib><creatorcontrib>Yuan, Ming-Dong</creatorcontrib><title>Soft decision optimization method for robust fundamental matrix estimation</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although these methods are simple to implement, their performance may be relatively low in the presence of gross outliers. By exploiting such coupled relation, the soft decision optimization method is proposed in this paper to estimate the fundamental matrix and find the inlier correspondence set together. Combing feature matching and fundamental matrix estimation, a soft decision objective function is developed to automatically remove the interference of the outliers in the candidate correspondence set. Moreover, an efficient expectation–maximization algorithm is established to find the solution to the fundamental matrix and the inlier correspondence set. Experiments on both synthesized data and real images show that the proposed method can cope with large noise and high ratio of outliers and is superior to some state-of-the-art robust methods in precision, recall, and residual error.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Image Processing and Computer Vision</subject><subject>Matching</subject><subject>Methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition</subject><subject>Robustness</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHPq5MPM5ujFLVKwYN6DvuR6JbupiZZUH-9aVfw5mG-mPfmDY-QcwaXDACvIgATZQFM59hlPCAzJgUvGCp9SGagc1-C5sfkJMY1AEhEOSOPz94l2tqmi50fqN-mru--q7QbepvefUudDzT4eoyJunFoq94OqdrQvkqh-6Q2ZsYef0qOXLWJ9uy3zsnr3e3LYlmsnu4fFjerohFMp8IKgbZuLfKSiwZ446xqrHBKKbxWFdO25ZKVXDqQSkGdFxw5aoeaCdbUYk4uprvb4D_GrG_WfgxDljScZwksNcqM4hOqCT7GYJ3Zhvxo-DIMzM4zM3lmsltm75nBTBITKWbw8GbD3-l_WD_RVW9C</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Xiao, Chun-Bao</creator><creator>Feng, Da-Zheng</creator><creator>Yuan, Ming-Dong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Soft decision optimization method for robust fundamental matrix estimation</title><author>Xiao, Chun-Bao ; Feng, Da-Zheng ; Yuan, Ming-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Image Processing and Computer Vision</topic><topic>Matching</topic><topic>Methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition</topic><topic>Robustness</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chun-Bao</creatorcontrib><creatorcontrib>Feng, Da-Zheng</creatorcontrib><creatorcontrib>Yuan, Ming-Dong</creatorcontrib><collection>CrossRef</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Chun-Bao</au><au>Feng, Da-Zheng</au><au>Yuan, Ming-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft decision optimization method for robust fundamental matrix estimation</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>4</issue><spage>657</spage><epage>669</epage><pages>657-669</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although these methods are simple to implement, their performance may be relatively low in the presence of gross outliers. By exploiting such coupled relation, the soft decision optimization method is proposed in this paper to estimate the fundamental matrix and find the inlier correspondence set together. Combing feature matching and fundamental matrix estimation, a soft decision objective function is developed to automatically remove the interference of the outliers in the candidate correspondence set. Moreover, an efficient expectation–maximization algorithm is established to find the solution to the fundamental matrix and the inlier correspondence set. Experiments on both synthesized data and real images show that the proposed method can cope with large noise and high ratio of outliers and is superior to some state-of-the-art robust methods in precision, recall, and residual error.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-019-01019-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2019-06, Vol.30 (4), p.657-669
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_journals_2231978974
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Communications Engineering
Computer Science
Computer vision
Image Processing and Computer Vision
Matching
Methods
Networks
Optimization
Original Paper
Outliers (statistics)
Pattern Recognition
Robustness
Vision systems
title Soft decision optimization method for robust fundamental matrix estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20decision%20optimization%20method%20for%20robust%20fundamental%20matrix%20estimation&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Xiao,%20Chun-Bao&rft.date=2019-06-01&rft.volume=30&rft.issue=4&rft.spage=657&rft.epage=669&rft.pages=657-669&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-019-01019-7&rft_dat=%3Cproquest_cross%3E2231978974%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e337ebde72823c02cfe6ce3f666756a19ed241824f04660bf6627279f79131cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231978974&rft_id=info:pmid/&rfr_iscdi=true