Loading…
The first eigenvalue and eigenfunction of a nonlinear elliptic system
In this paper, we study the first eigenvalue of a nonlinear elliptic system involving \(p\)-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplici...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bozorgnia, Farid Seyyed Abbas Mohammadi Vejchodsky, Tomas |
description | In this paper, we study the first eigenvalue of a nonlinear elliptic system involving \(p\)-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplicity of the first eigenvalue is given. In addition, the upper and lower bounds of the first eigenvalue are provided. Then, a numerical algorithm is developed to approximate the principal eigenvalue. This algorithm generates a decreasing sequence of positive numbers and various examples numerically indicate its convergence. Further, the algorithm is generalized to a class of gradient quasilinear elliptic systems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232264593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232264593</sourcerecordid><originalsourceid>FETCH-proquest_journals_22322645933</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6UF_aqmupeIDuS6gvNSW-1HwEb6-gB3A1DDMLkaGUu-JQIa5EHsJUliU2e6xrmYm2uxFo40MEMiPxU9lEoPj6VZ14iMYxOA0K2LE1TMoDWWvmaAYIrxDpvhFLrWyg_Me12J7b7nQpZu8eiULsJ5c8f1KPKBGbqj5K-d_1Bp6QOzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232264593</pqid></control><display><type>article</type><title>The first eigenvalue and eigenfunction of a nonlinear elliptic system</title><source>Publicly Available Content Database</source><creator>Bozorgnia, Farid ; Seyyed Abbas Mohammadi ; Vejchodsky, Tomas</creator><creatorcontrib>Bozorgnia, Farid ; Seyyed Abbas Mohammadi ; Vejchodsky, Tomas</creatorcontrib><description>In this paper, we study the first eigenvalue of a nonlinear elliptic system involving \(p\)-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplicity of the first eigenvalue is given. In addition, the upper and lower bounds of the first eigenvalue are provided. Then, a numerical algorithm is developed to approximate the principal eigenvalue. This algorithm generates a decreasing sequence of positive numbers and various examples numerically indicate its convergence. Further, the algorithm is generalized to a class of gradient quasilinear elliptic systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Differential equations ; Eigenvalues ; Eigenvectors ; Lower bounds ; Numerical analysis ; Operators (mathematics)</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2232264593?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Bozorgnia, Farid</creatorcontrib><creatorcontrib>Seyyed Abbas Mohammadi</creatorcontrib><creatorcontrib>Vejchodsky, Tomas</creatorcontrib><title>The first eigenvalue and eigenfunction of a nonlinear elliptic system</title><title>arXiv.org</title><description>In this paper, we study the first eigenvalue of a nonlinear elliptic system involving \(p\)-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplicity of the first eigenvalue is given. In addition, the upper and lower bounds of the first eigenvalue are provided. Then, a numerical algorithm is developed to approximate the principal eigenvalue. This algorithm generates a decreasing sequence of positive numbers and various examples numerically indicate its convergence. Further, the algorithm is generalized to a class of gradient quasilinear elliptic systems.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Lower bounds</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6UF_aqmupeIDuS6gvNSW-1HwEb6-gB3A1DDMLkaGUu-JQIa5EHsJUliU2e6xrmYm2uxFo40MEMiPxU9lEoPj6VZ14iMYxOA0K2LE1TMoDWWvmaAYIrxDpvhFLrWyg_Me12J7b7nQpZu8eiULsJ5c8f1KPKBGbqj5K-d_1Bp6QOzw</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Bozorgnia, Farid</creator><creator>Seyyed Abbas Mohammadi</creator><creator>Vejchodsky, Tomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190528</creationdate><title>The first eigenvalue and eigenfunction of a nonlinear elliptic system</title><author>Bozorgnia, Farid ; Seyyed Abbas Mohammadi ; Vejchodsky, Tomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22322645933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Lower bounds</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bozorgnia, Farid</creatorcontrib><creatorcontrib>Seyyed Abbas Mohammadi</creatorcontrib><creatorcontrib>Vejchodsky, Tomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozorgnia, Farid</au><au>Seyyed Abbas Mohammadi</au><au>Vejchodsky, Tomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The first eigenvalue and eigenfunction of a nonlinear elliptic system</atitle><jtitle>arXiv.org</jtitle><date>2019-05-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the first eigenvalue of a nonlinear elliptic system involving \(p\)-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplicity of the first eigenvalue is given. In addition, the upper and lower bounds of the first eigenvalue are provided. Then, a numerical algorithm is developed to approximate the principal eigenvalue. This algorithm generates a decreasing sequence of positive numbers and various examples numerically indicate its convergence. Further, the algorithm is generalized to a class of gradient quasilinear elliptic systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2232264593 |
source | Publicly Available Content Database |
subjects | Algorithms Differential equations Eigenvalues Eigenvectors Lower bounds Numerical analysis Operators (mathematics) |
title | The first eigenvalue and eigenfunction of a nonlinear elliptic system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20first%20eigenvalue%20and%20eigenfunction%20of%20a%20nonlinear%20elliptic%20system&rft.jtitle=arXiv.org&rft.au=Bozorgnia,%20Farid&rft.date=2019-05-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232264593%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22322645933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232264593&rft_id=info:pmid/&rfr_iscdi=true |