Loading…
Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions
This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite time horizon. We use stochastic barrier functions as a means to quantify the probability that a system exits a given safe region of the state space in finite time. A barrier certificate condition that b...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Santoyo, Cesar Dutreix, Maxence Coogan, Samuel |
description | This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite time horizon. We use stochastic barrier functions as a means to quantify the probability that a system exits a given safe region of the state space in finite time. A barrier certificate condition that bounds the infinitesimal generator of the system, and hence bounds the expected value of the barrier function over the time horizon, is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent bound on the infinitesimal generator, allowing for tighter probability bounds. Moreover, for stochastic systems for which the drift dynamics are affine-in-control, we propose a method for synthesizing polynomial state feedback controllers that achieve a specified probability of safety. Two case studies are presented that benchmark and illustrate the performance of our method. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232267577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232267577</sourcerecordid><originalsourceid>FETCH-proquest_journals_22322675773</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_eNBasJnM1knSXmnTQgaboSc6U_OegX-fQR_Q6i7uuYe7EJFUapcc91KuREzUpWkqD7nMMhWJ29UEtNhqRu9AuzsU3nHwPVgfoESHbJIaBwOVtoYn8BYq9u1DE2ML1URsBoI3ajjpENDMo9G1XxttxNLqnkz8y7XYlue6uCTP4F-jIW46PwY3V42USs6fsjxX_1EfaR9C_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232267577</pqid></control><display><type>article</type><title>Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions</title><source>Publicly Available Content Database</source><creator>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</creator><creatorcontrib>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</creatorcontrib><description>This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite time horizon. We use stochastic barrier functions as a means to quantify the probability that a system exits a given safe region of the state space in finite time. A barrier certificate condition that bounds the infinitesimal generator of the system, and hence bounds the expected value of the barrier function over the time horizon, is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent bound on the infinitesimal generator, allowing for tighter probability bounds. Moreover, for stochastic systems for which the drift dynamics are affine-in-control, we propose a method for synthesizing polynomial state feedback controllers that achieve a specified probability of safety. Two case studies are presented that benchmark and illustrate the performance of our method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feedback control ; Markov analysis ; Mathematical analysis ; Numerical analysis ; Optimization ; Polynomials ; Probability theory ; Safety ; State feedback ; Stochastic systems</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2232267577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Santoyo, Cesar</creatorcontrib><creatorcontrib>Dutreix, Maxence</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><title>Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions</title><title>arXiv.org</title><description>This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite time horizon. We use stochastic barrier functions as a means to quantify the probability that a system exits a given safe region of the state space in finite time. A barrier certificate condition that bounds the infinitesimal generator of the system, and hence bounds the expected value of the barrier function over the time horizon, is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent bound on the infinitesimal generator, allowing for tighter probability bounds. Moreover, for stochastic systems for which the drift dynamics are affine-in-control, we propose a method for synthesizing polynomial state feedback controllers that achieve a specified probability of safety. Two case studies are presented that benchmark and illustrate the performance of our method.</description><subject>Feedback control</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Probability theory</subject><subject>Safety</subject><subject>State feedback</subject><subject>Stochastic systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjsEKgkAURYcgSMp_eNBasJnM1knSXmnTQgaboSc6U_OegX-fQR_Q6i7uuYe7EJFUapcc91KuREzUpWkqD7nMMhWJ29UEtNhqRu9AuzsU3nHwPVgfoESHbJIaBwOVtoYn8BYq9u1DE2ML1URsBoI3ajjpENDMo9G1XxttxNLqnkz8y7XYlue6uCTP4F-jIW46PwY3V42USs6fsjxX_1EfaR9C_Q</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Santoyo, Cesar</creator><creator>Dutreix, Maxence</creator><creator>Coogan, Samuel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190528</creationdate><title>Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions</title><author>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22322675773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Feedback control</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Probability theory</topic><topic>Safety</topic><topic>State feedback</topic><topic>Stochastic systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Santoyo, Cesar</creatorcontrib><creatorcontrib>Dutreix, Maxence</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoyo, Cesar</au><au>Dutreix, Maxence</au><au>Coogan, Samuel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions</atitle><jtitle>arXiv.org</jtitle><date>2019-05-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite time horizon. We use stochastic barrier functions as a means to quantify the probability that a system exits a given safe region of the state space in finite time. A barrier certificate condition that bounds the infinitesimal generator of the system, and hence bounds the expected value of the barrier function over the time horizon, is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent bound on the infinitesimal generator, allowing for tighter probability bounds. Moreover, for stochastic systems for which the drift dynamics are affine-in-control, we propose a method for synthesizing polynomial state feedback controllers that achieve a specified probability of safety. Two case studies are presented that benchmark and illustrate the performance of our method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2232267577 |
source | Publicly Available Content Database |
subjects | Feedback control Markov analysis Mathematical analysis Numerical analysis Optimization Polynomials Probability theory Safety State feedback Stochastic systems |
title | Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Verification%20and%20Control%20for%20Finite-Time%20Safety%20of%20Stochastic%20Systems%20via%20Barrier%20Functions&rft.jtitle=arXiv.org&rft.au=Santoyo,%20Cesar&rft.date=2019-05-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232267577%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22322675773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232267577&rft_id=info:pmid/&rfr_iscdi=true |