Loading…

Effect of cenosphere filler surface treatment on the erosion behavior of epoxy matrix syntactic foams

Influence of cenosphere surface modification and volume fraction on the solid particle erosion of cenosphere/epoxy syntactic foams is investigated. Fly ash cenospheres are used as filler in both as received and silane surface modified configurations. Erosion behavior is studied at room temperature f...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2019-06, Vol.40 (6), p.2109-2118
Main Authors: Shahapurkar, Kiran, Doddamani, Mrityunjay, Mohan Kumar, G. C., Gupta, Nikhil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Influence of cenosphere surface modification and volume fraction on the solid particle erosion of cenosphere/epoxy syntactic foams is investigated. Fly ash cenospheres are used as filler in both as received and silane surface modified configurations. Erosion behavior is studied at room temperature for different impact angles (30, 45, 60, and 90°) and velocities (30, 45, and 60 m/s). Neat epoxy shows the highest erosion rate compared with that of the syntactic foams. Results show a strong dependence of impact angle and velocity on erosion rate of syntactic foams. With increasing cenosphere content erosion rate decreases for all impact angles. Erosion rate decreases with increasing impact angle and with decreasing velocity. Good interfacial bonding of treated cenospheres enhances the erosion resistance. All the samples exhibit ductile erosive behavior, with maximum erosion at 30°. The velocity exponent and erosion efficiency parameters confirm the ductile behavior of syntactic foams. POLYM. COMPOS., 40:2109–2118, 2019. © 2018 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.24994