Loading…
Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser
A novel double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0‐μm infrared laser, was fabricated by a rod‐tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matc...
Saved in:
Published in: | Journal of the American Ceramic Society 2019-08, Vol.102 (8), p.4748-4756 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4756 |
container_issue | 8 |
container_start_page | 4748 |
container_title | Journal of the American Ceramic Society |
container_volume | 102 |
creator | Zhou, Dechun Jin, DanYang Ni, Qiming Song, Xiangyang Bai, Xuemei Han, Kexuan |
description | A novel double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0‐μm infrared laser, was fabricated by a rod‐tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matching thermal expansion coefficient for fiber drawing when Tx−Tg > 193°C and the maximum difference of the thermal expansion coefficient is 3.55 × 10−6/°C or less. The 2.0‐μm luminescence characteristics were studied using the central wavelength of 808 nm pump light excitation. The results show that when the concentration ratio of Ho3+/Tm3+ reaches 0.5 mol%:1.0 mol%, the maximum fluorescence intensity was obtained in the core glass, the emission cross section reached 10.09 × 10−21 cm2, and the maximum phonon energy was 751 cm−1. In this paper, a continuous laser output with a maximum power of 0.986 W and a wavelength of 2030 nm was obtained using an erbium‐doped fiber laser as a pump source in a 0.5 m long Ho3+/Tm3+ co‐doped glass fiber. In short, the results show that Ho3+/Tm3+ co‐doped 36Bi2O3–30GeO2–15Ga2O3–10BaF2–9Na2O glass fiber has excellent laser properties, and it is an ideal mid‐infrared fiber material for a 2.0‐μm fiber laser with excellent characteristics |
doi_str_mv | 10.1111/jace.16361 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2233735169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233735169</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1551-5fbafc4aa8392696adac10d903664df9c2e1d55516d016834b0817c27da513963</originalsourceid><addsrcrecordid>eNotUMtuwjAQtKpWKqW99Ass9YgCfiROfARUoBUSF3qONraDjEKcOqCKG6eeK_V3-g39CL6kBrqX2VnNzmoHoUdK-jTUYA3K9Knggl6hDk0SGjFJxTXqEEJYlGaM3KK7tl0HSmUWd9DnBApvFWytq7ErsXa7ojLHw5eqQGtbr_DM8d5gueE9rFyYa9cYjUeWLfjx8D01C3YCuNARTBheVdC2uLSF8Rhqje22xY3xpfMbqJXBtsaAWZ8Es9-fDQ5q4-_RTQlVax7-sYveJs_L8SyaL6Yv4-E8as7PJGUBpYoBMi6ZkAI0KEq0JFyIWJdSMUN1EpRCEyoyHhcko6liqYaEcil4Fz1dfBvv3nem3eZrt_N1OJkzxnnKw6oMKnpRfdjK7PPG2w34fU5Jfgo5P4Wcn0POX4fj53PH_wCaPHT9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233735169</pqid></control><display><type>article</type><title>Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser</title><source>Wiley</source><creator>Zhou, Dechun ; Jin, DanYang ; Ni, Qiming ; Song, Xiangyang ; Bai, Xuemei ; Han, Kexuan</creator><creatorcontrib>Zhou, Dechun ; Jin, DanYang ; Ni, Qiming ; Song, Xiangyang ; Bai, Xuemei ; Han, Kexuan</creatorcontrib><description>A novel double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0‐μm infrared laser, was fabricated by a rod‐tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matching thermal expansion coefficient for fiber drawing when Tx−Tg > 193°C and the maximum difference of the thermal expansion coefficient is 3.55 × 10−6/°C or less. The 2.0‐μm luminescence characteristics were studied using the central wavelength of 808 nm pump light excitation. The results show that when the concentration ratio of Ho3+/Tm3+ reaches 0.5 mol%:1.0 mol%, the maximum fluorescence intensity was obtained in the core glass, the emission cross section reached 10.09 × 10−21 cm2, and the maximum phonon energy was 751 cm−1. In this paper, a continuous laser output with a maximum power of 0.986 W and a wavelength of 2030 nm was obtained using an erbium‐doped fiber laser as a pump source in a 0.5 m long Ho3+/Tm3+ co‐doped glass fiber. In short, the results show that Ho3+/Tm3+ co‐doped 36Bi2O3–30GeO2–15Ga2O3–10BaF2–9Na2O glass fiber has excellent laser properties, and it is an ideal mid‐infrared fiber material for a 2.0‐μm fiber laser with excellent characteristics</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16361</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>2.0‐μm laser ; Barium fluorides ; Bi2O3–GeO2–Ga2O3–BaF2 glass fiber ; Bismuth oxides ; Bismuth trioxide ; Doped fibers ; double‐cladding ; Erbium ; Fiber lasers ; Fluorescence ; Gallium oxides ; Germanium oxides ; Glass fibers ; Ho3+/Tm3+ co‐doped ; Holmium ; Infrared lasers ; Laser beam cladding ; Lasers ; Maximum power ; rod‐tube drawing method ; Thermal expansion ; Thermal stability ; Thermodynamic properties ; Thulium</subject><ispartof>Journal of the American Ceramic Society, 2019-08, Vol.102 (8), p.4748-4756</ispartof><rights>2019 The American Ceramic Society</rights><rights>2019 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5374-3655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhou, Dechun</creatorcontrib><creatorcontrib>Jin, DanYang</creatorcontrib><creatorcontrib>Ni, Qiming</creatorcontrib><creatorcontrib>Song, Xiangyang</creatorcontrib><creatorcontrib>Bai, Xuemei</creatorcontrib><creatorcontrib>Han, Kexuan</creatorcontrib><title>Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser</title><title>Journal of the American Ceramic Society</title><description>A novel double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0‐μm infrared laser, was fabricated by a rod‐tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matching thermal expansion coefficient for fiber drawing when Tx−Tg > 193°C and the maximum difference of the thermal expansion coefficient is 3.55 × 10−6/°C or less. The 2.0‐μm luminescence characteristics were studied using the central wavelength of 808 nm pump light excitation. The results show that when the concentration ratio of Ho3+/Tm3+ reaches 0.5 mol%:1.0 mol%, the maximum fluorescence intensity was obtained in the core glass, the emission cross section reached 10.09 × 10−21 cm2, and the maximum phonon energy was 751 cm−1. In this paper, a continuous laser output with a maximum power of 0.986 W and a wavelength of 2030 nm was obtained using an erbium‐doped fiber laser as a pump source in a 0.5 m long Ho3+/Tm3+ co‐doped glass fiber. In short, the results show that Ho3+/Tm3+ co‐doped 36Bi2O3–30GeO2–15Ga2O3–10BaF2–9Na2O glass fiber has excellent laser properties, and it is an ideal mid‐infrared fiber material for a 2.0‐μm fiber laser with excellent characteristics</description><subject>2.0‐μm laser</subject><subject>Barium fluorides</subject><subject>Bi2O3–GeO2–Ga2O3–BaF2 glass fiber</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Doped fibers</subject><subject>double‐cladding</subject><subject>Erbium</subject><subject>Fiber lasers</subject><subject>Fluorescence</subject><subject>Gallium oxides</subject><subject>Germanium oxides</subject><subject>Glass fibers</subject><subject>Ho3+/Tm3+ co‐doped</subject><subject>Holmium</subject><subject>Infrared lasers</subject><subject>Laser beam cladding</subject><subject>Lasers</subject><subject>Maximum power</subject><subject>rod‐tube drawing method</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thulium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotUMtuwjAQtKpWKqW99Ass9YgCfiROfARUoBUSF3qONraDjEKcOqCKG6eeK_V3-g39CL6kBrqX2VnNzmoHoUdK-jTUYA3K9Knggl6hDk0SGjFJxTXqEEJYlGaM3KK7tl0HSmUWd9DnBApvFWytq7ErsXa7ojLHw5eqQGtbr_DM8d5gueE9rFyYa9cYjUeWLfjx8D01C3YCuNARTBheVdC2uLSF8Rhqje22xY3xpfMbqJXBtsaAWZ8Es9-fDQ5q4-_RTQlVax7-sYveJs_L8SyaL6Yv4-E8as7PJGUBpYoBMi6ZkAI0KEq0JFyIWJdSMUN1EpRCEyoyHhcko6liqYaEcil4Fz1dfBvv3nem3eZrt_N1OJkzxnnKw6oMKnpRfdjK7PPG2w34fU5Jfgo5P4Wcn0POX4fj53PH_wCaPHT9</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Zhou, Dechun</creator><creator>Jin, DanYang</creator><creator>Ni, Qiming</creator><creator>Song, Xiangyang</creator><creator>Bai, Xuemei</creator><creator>Han, Kexuan</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5374-3655</orcidid></search><sort><creationdate>201908</creationdate><title>Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser</title><author>Zhou, Dechun ; Jin, DanYang ; Ni, Qiming ; Song, Xiangyang ; Bai, Xuemei ; Han, Kexuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1551-5fbafc4aa8392696adac10d903664df9c2e1d55516d016834b0817c27da513963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2.0‐μm laser</topic><topic>Barium fluorides</topic><topic>Bi2O3–GeO2–Ga2O3–BaF2 glass fiber</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Doped fibers</topic><topic>double‐cladding</topic><topic>Erbium</topic><topic>Fiber lasers</topic><topic>Fluorescence</topic><topic>Gallium oxides</topic><topic>Germanium oxides</topic><topic>Glass fibers</topic><topic>Ho3+/Tm3+ co‐doped</topic><topic>Holmium</topic><topic>Infrared lasers</topic><topic>Laser beam cladding</topic><topic>Lasers</topic><topic>Maximum power</topic><topic>rod‐tube drawing method</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thulium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Dechun</creatorcontrib><creatorcontrib>Jin, DanYang</creatorcontrib><creatorcontrib>Ni, Qiming</creatorcontrib><creatorcontrib>Song, Xiangyang</creatorcontrib><creatorcontrib>Bai, Xuemei</creatorcontrib><creatorcontrib>Han, Kexuan</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Dechun</au><au>Jin, DanYang</au><au>Ni, Qiming</au><au>Song, Xiangyang</au><au>Bai, Xuemei</au><au>Han, Kexuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-08</date><risdate>2019</risdate><volume>102</volume><issue>8</issue><spage>4748</spage><epage>4756</epage><pages>4748-4756</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>A novel double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber, which can be applied to a 2.0‐μm infrared laser, was fabricated by a rod‐tube drawing method. The thermal properties of the glass were studied by differential scanning calorimetry. It showed good thermal stability and matching thermal expansion coefficient for fiber drawing when Tx−Tg > 193°C and the maximum difference of the thermal expansion coefficient is 3.55 × 10−6/°C or less. The 2.0‐μm luminescence characteristics were studied using the central wavelength of 808 nm pump light excitation. The results show that when the concentration ratio of Ho3+/Tm3+ reaches 0.5 mol%:1.0 mol%, the maximum fluorescence intensity was obtained in the core glass, the emission cross section reached 10.09 × 10−21 cm2, and the maximum phonon energy was 751 cm−1. In this paper, a continuous laser output with a maximum power of 0.986 W and a wavelength of 2030 nm was obtained using an erbium‐doped fiber laser as a pump source in a 0.5 m long Ho3+/Tm3+ co‐doped glass fiber. In short, the results show that Ho3+/Tm3+ co‐doped 36Bi2O3–30GeO2–15Ga2O3–10BaF2–9Na2O glass fiber has excellent laser properties, and it is an ideal mid‐infrared fiber material for a 2.0‐μm fiber laser with excellent characteristics</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16361</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5374-3655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2019-08, Vol.102 (8), p.4748-4756 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2233735169 |
source | Wiley |
subjects | 2.0‐μm laser Barium fluorides Bi2O3–GeO2–Ga2O3–BaF2 glass fiber Bismuth oxides Bismuth trioxide Doped fibers double‐cladding Erbium Fiber lasers Fluorescence Gallium oxides Germanium oxides Glass fibers Ho3+/Tm3+ co‐doped Holmium Infrared lasers Laser beam cladding Lasers Maximum power rod‐tube drawing method Thermal expansion Thermal stability Thermodynamic properties Thulium |
title | Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20double%E2%80%90cladding%20Ho3+/Tm3+%20co%E2%80%90doped%20Bi2O3%E2%80%93GeO2%E2%80%93Ga2O3%E2%80%93BaF2%20glass%20fiber%20and%20its%20performance%20in%20a%202.0%E2%80%90%CE%BCm%20laser&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhou,%20Dechun&rft.date=2019-08&rft.volume=102&rft.issue=8&rft.spage=4748&rft.epage=4756&rft.pages=4748-4756&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16361&rft_dat=%3Cproquest_wiley%3E2233735169%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1551-5fbafc4aa8392696adac10d903664df9c2e1d55516d016834b0817c27da513963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233735169&rft_id=info:pmid/&rfr_iscdi=true |