Loading…
THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime
Strong coupling between light and matter occurs when the two interact such that new hybrid modes, the so-called polaritons, are formed. Here, we report on the strong coupling of both the electric and the magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In o...
Saved in:
Published in: | Journal of applied physics 2019-06, Vol.125 (21) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Strong coupling between light and matter occurs when the two interact such that new hybrid modes, the so-called polaritons, are formed. Here, we report on the strong coupling of both the electric and the magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In our system, optical phonons in a slab of ferroelectric lithium niobate are strongly coupled to a THz electric field to form phonon-polaritons, which are simultaneously strongly coupled to magnons in an adjacent slab of canted antiferromagnetic erbium orthoferrite via the magnetic-field component of the same THz pulse. We juxtapose experimental results of bare slabs consisting of the two materials with a photonic crystal cavity, consisting of a two-dimensional array of air holes cut into the hybrid slab. In both cases, the strong coupling leads to the formation of new magnon-phonon-polariton modes, which we experimentally observe in the time domain as a normal-mode beating and which corresponds in the frequency domain to an avoided crossing. Our simple yet versatile waveguide platform provides a promising avenue through which to explore ultrafast THz spintronics, quantum electrodynamics, sensing, and spectroscopic applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5083849 |