Loading…

Differential graphical games for H∞ control of linear heterogeneous multiagent systems

Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we defin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2019-07, Vol.29 (10), p.2995-3013
Main Authors: Adib Yaghmaie, Farnaz, Hengster Movric, Kristian, Lewis, Frank L., Su, Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663
cites cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663
container_end_page 3013
container_issue 10
container_start_page 2995
container_title International journal of robust and nonlinear control
container_volume 29
creator Adib Yaghmaie, Farnaz
Hengster Movric, Kristian
Lewis, Frank L.
Su, Rong
description Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.
doi_str_mv 10.1002/rnc.4538
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234285523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234285523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay1ySpdRLhaIgCu5CJnPSTpmZ1GQG6Rv4FD6cT2LGunV1_sP5-A98CJ1TMqOEsCvfmVmacXGAJpRImVDG5eGYU5kIyfgxOglhQ0i8sXSC3m5qa8FD19e6wSuvt-vajEm3ELB1Hi--P7-wcV3vXYOdxU3dgfZ4DT14t4IO3BBwOzSxIG49DrvQQxtO0ZHVTYCzvzlFr3e3L_NFsny6f5hfLxPDWSESWVhRVrS0wDVAKmSeWqPTXDNd5nlZcc5AVhwKIwpKRJXJrJTSlpwyAzrP-RRd7Hu33r0PEHq1cYPv4kvFGE-ZyDLGI3W5p4x3IXiwauvrVvudokSN3lT0pkZvEU326EfdwO5fTj0_zn_5HxJZcQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234285523</pqid></control><display><type>article</type><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</creator><creatorcontrib>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</creatorcontrib><description>Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4538</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computer simulation ; differential graphical games ; Games ; H-infinity control ; H∞ control ; linear heterogeneous multiagent systems ; Mathematical analysis ; Multiagent systems ; Synchronism ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2019-07, Vol.29 (10), p.2995-3013</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</citedby><cites>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</cites><orcidid>0000-0002-6665-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adib Yaghmaie, Farnaz</creatorcontrib><creatorcontrib>Hengster Movric, Kristian</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Su, Rong</creatorcontrib><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><title>International journal of robust and nonlinear control</title><description>Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>differential graphical games</subject><subject>Games</subject><subject>H-infinity control</subject><subject>H∞ control</subject><subject>linear heterogeneous multiagent systems</subject><subject>Mathematical analysis</subject><subject>Multiagent systems</subject><subject>Synchronism</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay1ySpdRLhaIgCu5CJnPSTpmZ1GQG6Rv4FD6cT2LGunV1_sP5-A98CJ1TMqOEsCvfmVmacXGAJpRImVDG5eGYU5kIyfgxOglhQ0i8sXSC3m5qa8FD19e6wSuvt-vajEm3ELB1Hi--P7-wcV3vXYOdxU3dgfZ4DT14t4IO3BBwOzSxIG49DrvQQxtO0ZHVTYCzvzlFr3e3L_NFsny6f5hfLxPDWSESWVhRVrS0wDVAKmSeWqPTXDNd5nlZcc5AVhwKIwpKRJXJrJTSlpwyAzrP-RRd7Hu33r0PEHq1cYPv4kvFGE-ZyDLGI3W5p4x3IXiwauvrVvudokSN3lT0pkZvEU326EfdwO5fTj0_zn_5HxJZcQc</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Adib Yaghmaie, Farnaz</creator><creator>Hengster Movric, Kristian</creator><creator>Lewis, Frank L.</creator><creator>Su, Rong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6665-5881</orcidid></search><sort><creationdate>20190710</creationdate><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><author>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>differential graphical games</topic><topic>Games</topic><topic>H-infinity control</topic><topic>H∞ control</topic><topic>linear heterogeneous multiagent systems</topic><topic>Mathematical analysis</topic><topic>Multiagent systems</topic><topic>Synchronism</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adib Yaghmaie, Farnaz</creatorcontrib><creatorcontrib>Hengster Movric, Kristian</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Su, Rong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adib Yaghmaie, Farnaz</au><au>Hengster Movric, Kristian</au><au>Lewis, Frank L.</au><au>Su, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2019-07-10</date><risdate>2019</risdate><volume>29</volume><issue>10</issue><spage>2995</spage><epage>3013</epage><pages>2995-3013</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4538</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6665-5881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2019-07, Vol.29 (10), p.2995-3013
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2234285523
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Computer simulation
differential graphical games
Games
H-infinity control
H∞ control
linear heterogeneous multiagent systems
Mathematical analysis
Multiagent systems
Synchronism
Upper bounds
title Differential graphical games for H∞ control of linear heterogeneous multiagent systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20graphical%20games%20for%20H%E2%88%9E%20control%20of%20linear%20heterogeneous%20multiagent%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Adib%20Yaghmaie,%20Farnaz&rft.date=2019-07-10&rft.volume=29&rft.issue=10&rft.spage=2995&rft.epage=3013&rft.pages=2995-3013&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4538&rft_dat=%3Cproquest_cross%3E2234285523%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2234285523&rft_id=info:pmid/&rfr_iscdi=true