Loading…
Differential graphical games for H∞ control of linear heterogeneous multiagent systems
Summary Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we defin...
Saved in:
Published in: | International journal of robust and nonlinear control 2019-07, Vol.29 (10), p.2995-3013 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663 |
---|---|
cites | cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663 |
container_end_page | 3013 |
container_issue | 10 |
container_start_page | 2995 |
container_title | International journal of robust and nonlinear control |
container_volume | 29 |
creator | Adib Yaghmaie, Farnaz Hengster Movric, Kristian Lewis, Frank L. Su, Rong |
description | Summary
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall
L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example. |
doi_str_mv | 10.1002/rnc.4538 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234285523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234285523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay1ySpdRLhaIgCu5CJnPSTpmZ1GQG6Rv4FD6cT2LGunV1_sP5-A98CJ1TMqOEsCvfmVmacXGAJpRImVDG5eGYU5kIyfgxOglhQ0i8sXSC3m5qa8FD19e6wSuvt-vajEm3ELB1Hi--P7-wcV3vXYOdxU3dgfZ4DT14t4IO3BBwOzSxIG49DrvQQxtO0ZHVTYCzvzlFr3e3L_NFsny6f5hfLxPDWSESWVhRVrS0wDVAKmSeWqPTXDNd5nlZcc5AVhwKIwpKRJXJrJTSlpwyAzrP-RRd7Hu33r0PEHq1cYPv4kvFGE-ZyDLGI3W5p4x3IXiwauvrVvudokSN3lT0pkZvEU326EfdwO5fTj0_zn_5HxJZcQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234285523</pqid></control><display><type>article</type><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</creator><creatorcontrib>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</creatorcontrib><description>Summary
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall
L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4538</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computer simulation ; differential graphical games ; Games ; H-infinity control ; H∞ control ; linear heterogeneous multiagent systems ; Mathematical analysis ; Multiagent systems ; Synchronism ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2019-07, Vol.29 (10), p.2995-3013</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</citedby><cites>FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</cites><orcidid>0000-0002-6665-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adib Yaghmaie, Farnaz</creatorcontrib><creatorcontrib>Hengster Movric, Kristian</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Su, Rong</creatorcontrib><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><title>International journal of robust and nonlinear control</title><description>Summary
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall
L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>differential graphical games</subject><subject>Games</subject><subject>H-infinity control</subject><subject>H∞ control</subject><subject>linear heterogeneous multiagent systems</subject><subject>Mathematical analysis</subject><subject>Multiagent systems</subject><subject>Synchronism</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay1ySpdRLhaIgCu5CJnPSTpmZ1GQG6Rv4FD6cT2LGunV1_sP5-A98CJ1TMqOEsCvfmVmacXGAJpRImVDG5eGYU5kIyfgxOglhQ0i8sXSC3m5qa8FD19e6wSuvt-vajEm3ELB1Hi--P7-wcV3vXYOdxU3dgfZ4DT14t4IO3BBwOzSxIG49DrvQQxtO0ZHVTYCzvzlFr3e3L_NFsny6f5hfLxPDWSESWVhRVrS0wDVAKmSeWqPTXDNd5nlZcc5AVhwKIwpKRJXJrJTSlpwyAzrP-RRd7Hu33r0PEHq1cYPv4kvFGE-ZyDLGI3W5p4x3IXiwauvrVvudokSN3lT0pkZvEU326EfdwO5fTj0_zn_5HxJZcQc</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Adib Yaghmaie, Farnaz</creator><creator>Hengster Movric, Kristian</creator><creator>Lewis, Frank L.</creator><creator>Su, Rong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6665-5881</orcidid></search><sort><creationdate>20190710</creationdate><title>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</title><author>Adib Yaghmaie, Farnaz ; Hengster Movric, Kristian ; Lewis, Frank L. ; Su, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>differential graphical games</topic><topic>Games</topic><topic>H-infinity control</topic><topic>H∞ control</topic><topic>linear heterogeneous multiagent systems</topic><topic>Mathematical analysis</topic><topic>Multiagent systems</topic><topic>Synchronism</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adib Yaghmaie, Farnaz</creatorcontrib><creatorcontrib>Hengster Movric, Kristian</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Su, Rong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adib Yaghmaie, Farnaz</au><au>Hengster Movric, Kristian</au><au>Lewis, Frank L.</au><au>Su, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential graphical games for H∞ control of linear heterogeneous multiagent systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2019-07-10</date><risdate>2019</risdate><volume>29</volume><issue>10</issue><spage>2995</spage><epage>3013</epage><pages>2995-3013</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H∞ output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall
L2‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4538</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6665-5881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2019-07, Vol.29 (10), p.2995-3013 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2234285523 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Computer simulation differential graphical games Games H-infinity control H∞ control linear heterogeneous multiagent systems Mathematical analysis Multiagent systems Synchronism Upper bounds |
title | Differential graphical games for H∞ control of linear heterogeneous multiagent systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20graphical%20games%20for%20H%E2%88%9E%20control%20of%20linear%20heterogeneous%20multiagent%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Adib%20Yaghmaie,%20Farnaz&rft.date=2019-07-10&rft.volume=29&rft.issue=10&rft.spage=2995&rft.epage=3013&rft.pages=2995-3013&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4538&rft_dat=%3Cproquest_cross%3E2234285523%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3278-97f8bd1bfe3aee48964fca46a2ab66bd332e9d3e7c87108d595b99fb312cea663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2234285523&rft_id=info:pmid/&rfr_iscdi=true |