Loading…

Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement

This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, w...

Full description

Saved in:
Bibliographic Details
Published in:Journal for research in mathematics education 2006-05, Vol.37 (3), p.187-221
Main Authors: Barrett, Jeffrey E., Clements, Douglas H., Klanderman, David, Pennisi, Sarah-Jean, Polaki, Mokaeane V.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 221
container_issue 3
container_start_page 187
container_title Journal for research in mathematics education
container_volume 37
creator Barrett, Jeffrey E.
Clements, Douglas H.
Klanderman, David
Pennisi, Sarah-Jean
Polaki, Mokaeane V.
description This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.
doi_str_mv 10.2307/30035058
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_223498296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ765481</ericid><jstor_id>30035058</jstor_id><sourcerecordid>30035058</sourcerecordid><originalsourceid>FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBBIlIfEB4BkceEUWNtxnHBDpRRQKxBtz5WTbEpKaxfbRfAx_CuuCpxWs7Mzs6sl5ITBJRegrgSAkCDzHdJhRSqT2Mx2SQeAsyTnku2TA-_nAKAYZB3yPQrrGk3wF7Rrratbo0NrDbUN7aNdYnBtRV9Qe2taM6Pa1HQY0dpt0Cg4HXDWoqdRould-4k1fUbXRiE6Otb-7Zre4gcu7GojGOrwisuYUOkFnZganQ_RckPFwEFrULtff1zGrY7IXqMXHo9_6yGZ3PXG3ftk8NR_6N4MEuRchqSErKnSiiGoTGgtKpVXBeMiw1SlgjGVS93wXEtQaQFljaVWZQN1XeYSSlGIQ3K-9V05-75GH6Zzu3YmRk45F2mR8yKLQ6fboXhfNV3FI7X7mvYeVSbTnEX6bEvPfbDun__7h_gBO0B-Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223498296</pqid></control><display><type>article</type><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ERIC</source><creator>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</creator><creatorcontrib>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</creatorcontrib><description>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</description><identifier>ISSN: 0021-8251</identifier><identifier>EISSN: 1945-2306</identifier><identifier>DOI: 10.2307/30035058</identifier><identifier>CODEN: JRMEDN</identifier><language>eng</language><publisher>Washington: National Council of Teachers of Mathematics</publisher><subject>Age Differences ; Children ; Cognition &amp; reasoning ; Comprehension ; Coordinate systems ; Elementary School Students ; Geometric Concepts ; Geometric shapes ; Geometry ; Grade 10 ; Grade 2 ; Identification ; Logical Thinking ; Mathematical Aptitude ; Mathematical Logic ; Mathematics education ; Mathematics Instruction ; Measurement ; Measurement Techniques ; New York ; Observation ; Reasoning ; Rectangles ; Secondary School Students ; Straw ; Student Development ; Students ; Triangles</subject><ispartof>Journal for research in mathematics education, 2006-05, Vol.37 (3), p.187-221</ispartof><rights>Copyright 2006 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30035058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30035058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ765481$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrett, Jeffrey E.</creatorcontrib><creatorcontrib>Clements, Douglas H.</creatorcontrib><creatorcontrib>Klanderman, David</creatorcontrib><creatorcontrib>Pennisi, Sarah-Jean</creatorcontrib><creatorcontrib>Polaki, Mokaeane V.</creatorcontrib><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><title>Journal for research in mathematics education</title><description>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</description><subject>Age Differences</subject><subject>Children</subject><subject>Cognition &amp; reasoning</subject><subject>Comprehension</subject><subject>Coordinate systems</subject><subject>Elementary School Students</subject><subject>Geometric Concepts</subject><subject>Geometric shapes</subject><subject>Geometry</subject><subject>Grade 10</subject><subject>Grade 2</subject><subject>Identification</subject><subject>Logical Thinking</subject><subject>Mathematical Aptitude</subject><subject>Mathematical Logic</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Measurement</subject><subject>Measurement Techniques</subject><subject>New York</subject><subject>Observation</subject><subject>Reasoning</subject><subject>Rectangles</subject><subject>Secondary School Students</subject><subject>Straw</subject><subject>Student Development</subject><subject>Students</subject><subject>Triangles</subject><issn>0021-8251</issn><issn>1945-2306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNo9UctOwzAQtBBIlIfEB4BkceEUWNtxnHBDpRRQKxBtz5WTbEpKaxfbRfAx_CuuCpxWs7Mzs6sl5ITBJRegrgSAkCDzHdJhRSqT2Mx2SQeAsyTnku2TA-_nAKAYZB3yPQrrGk3wF7Rrratbo0NrDbUN7aNdYnBtRV9Qe2taM6Pa1HQY0dpt0Cg4HXDWoqdRould-4k1fUbXRiE6Otb-7Zre4gcu7GojGOrwisuYUOkFnZganQ_RckPFwEFrULtff1zGrY7IXqMXHo9_6yGZ3PXG3ftk8NR_6N4MEuRchqSErKnSiiGoTGgtKpVXBeMiw1SlgjGVS93wXEtQaQFljaVWZQN1XeYSSlGIQ3K-9V05-75GH6Zzu3YmRk45F2mR8yKLQ6fboXhfNV3FI7X7mvYeVSbTnEX6bEvPfbDun__7h_gBO0B-Sg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Barrett, Jeffrey E.</creator><creator>Clements, Douglas H.</creator><creator>Klanderman, David</creator><creator>Pennisi, Sarah-Jean</creator><creator>Polaki, Mokaeane V.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>JQ2</scope></search><sort><creationdate>20060501</creationdate><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><author>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Age Differences</topic><topic>Children</topic><topic>Cognition &amp; reasoning</topic><topic>Comprehension</topic><topic>Coordinate systems</topic><topic>Elementary School Students</topic><topic>Geometric Concepts</topic><topic>Geometric shapes</topic><topic>Geometry</topic><topic>Grade 10</topic><topic>Grade 2</topic><topic>Identification</topic><topic>Logical Thinking</topic><topic>Mathematical Aptitude</topic><topic>Mathematical Logic</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Measurement</topic><topic>Measurement Techniques</topic><topic>New York</topic><topic>Observation</topic><topic>Reasoning</topic><topic>Rectangles</topic><topic>Secondary School Students</topic><topic>Straw</topic><topic>Student Development</topic><topic>Students</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrett, Jeffrey E.</creatorcontrib><creatorcontrib>Clements, Douglas H.</creatorcontrib><creatorcontrib>Klanderman, David</creatorcontrib><creatorcontrib>Pennisi, Sarah-Jean</creatorcontrib><creatorcontrib>Polaki, Mokaeane V.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal for research in mathematics education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrett, Jeffrey E.</au><au>Clements, Douglas H.</au><au>Klanderman, David</au><au>Pennisi, Sarah-Jean</au><au>Polaki, Mokaeane V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ765481</ericid><atitle>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</atitle><jtitle>Journal for research in mathematics education</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>37</volume><issue>3</issue><spage>187</spage><epage>221</epage><pages>187-221</pages><issn>0021-8251</issn><eissn>1945-2306</eissn><coden>JRMEDN</coden><abstract>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</abstract><cop>Washington</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.2307/30035058</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8251
ispartof Journal for research in mathematics education, 2006-05, Vol.37 (3), p.187-221
issn 0021-8251
1945-2306
language eng
recordid cdi_proquest_journals_223498296
source JSTOR Archival Journals and Primary Sources Collection; ERIC
subjects Age Differences
Children
Cognition & reasoning
Comprehension
Coordinate systems
Elementary School Students
Geometric Concepts
Geometric shapes
Geometry
Grade 10
Grade 2
Identification
Logical Thinking
Mathematical Aptitude
Mathematical Logic
Mathematics education
Mathematics Instruction
Measurement
Measurement Techniques
New York
Observation
Reasoning
Rectangles
Secondary School Students
Straw
Student Development
Students
Triangles
title Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Students'%20Coordination%20of%20Geometric%20Reasoning%20and%20Measuring%20Strategies%20on%20a%20Fixed%20Perimeter%20Task:%20Developing%20Mathematical%20Understanding%20of%20Linear%20Measurement&rft.jtitle=Journal%20for%20research%20in%20mathematics%20education&rft.au=Barrett,%20Jeffrey%20E.&rft.date=2006-05-01&rft.volume=37&rft.issue=3&rft.spage=187&rft.epage=221&rft.pages=187-221&rft.issn=0021-8251&rft.eissn=1945-2306&rft.coden=JRMEDN&rft_id=info:doi/10.2307/30035058&rft_dat=%3Cjstor_proqu%3E30035058%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223498296&rft_id=info:pmid/&rft_ericid=EJ765481&rft_jstor_id=30035058&rfr_iscdi=true