Loading…
Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement
This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, w...
Saved in:
Published in: | Journal for research in mathematics education 2006-05, Vol.37 (3), p.187-221 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 221 |
container_issue | 3 |
container_start_page | 187 |
container_title | Journal for research in mathematics education |
container_volume | 37 |
creator | Barrett, Jeffrey E. Clements, Douglas H. Klanderman, David Pennisi, Sarah-Jean Polaki, Mokaeane V. |
description | This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes. |
doi_str_mv | 10.2307/30035058 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_223498296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ765481</ericid><jstor_id>30035058</jstor_id><sourcerecordid>30035058</sourcerecordid><originalsourceid>FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBBIlIfEB4BkceEUWNtxnHBDpRRQKxBtz5WTbEpKaxfbRfAx_CuuCpxWs7Mzs6sl5ITBJRegrgSAkCDzHdJhRSqT2Mx2SQeAsyTnku2TA-_nAKAYZB3yPQrrGk3wF7Rrratbo0NrDbUN7aNdYnBtRV9Qe2taM6Pa1HQY0dpt0Cg4HXDWoqdRould-4k1fUbXRiE6Otb-7Zre4gcu7GojGOrwisuYUOkFnZganQ_RckPFwEFrULtff1zGrY7IXqMXHo9_6yGZ3PXG3ftk8NR_6N4MEuRchqSErKnSiiGoTGgtKpVXBeMiw1SlgjGVS93wXEtQaQFljaVWZQN1XeYSSlGIQ3K-9V05-75GH6Zzu3YmRk45F2mR8yKLQ6fboXhfNV3FI7X7mvYeVSbTnEX6bEvPfbDun__7h_gBO0B-Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223498296</pqid></control><display><type>article</type><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ERIC</source><creator>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</creator><creatorcontrib>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</creatorcontrib><description>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</description><identifier>ISSN: 0021-8251</identifier><identifier>EISSN: 1945-2306</identifier><identifier>DOI: 10.2307/30035058</identifier><identifier>CODEN: JRMEDN</identifier><language>eng</language><publisher>Washington: National Council of Teachers of Mathematics</publisher><subject>Age Differences ; Children ; Cognition & reasoning ; Comprehension ; Coordinate systems ; Elementary School Students ; Geometric Concepts ; Geometric shapes ; Geometry ; Grade 10 ; Grade 2 ; Identification ; Logical Thinking ; Mathematical Aptitude ; Mathematical Logic ; Mathematics education ; Mathematics Instruction ; Measurement ; Measurement Techniques ; New York ; Observation ; Reasoning ; Rectangles ; Secondary School Students ; Straw ; Student Development ; Students ; Triangles</subject><ispartof>Journal for research in mathematics education, 2006-05, Vol.37 (3), p.187-221</ispartof><rights>Copyright 2006 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30035058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30035058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ765481$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrett, Jeffrey E.</creatorcontrib><creatorcontrib>Clements, Douglas H.</creatorcontrib><creatorcontrib>Klanderman, David</creatorcontrib><creatorcontrib>Pennisi, Sarah-Jean</creatorcontrib><creatorcontrib>Polaki, Mokaeane V.</creatorcontrib><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><title>Journal for research in mathematics education</title><description>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</description><subject>Age Differences</subject><subject>Children</subject><subject>Cognition & reasoning</subject><subject>Comprehension</subject><subject>Coordinate systems</subject><subject>Elementary School Students</subject><subject>Geometric Concepts</subject><subject>Geometric shapes</subject><subject>Geometry</subject><subject>Grade 10</subject><subject>Grade 2</subject><subject>Identification</subject><subject>Logical Thinking</subject><subject>Mathematical Aptitude</subject><subject>Mathematical Logic</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Measurement</subject><subject>Measurement Techniques</subject><subject>New York</subject><subject>Observation</subject><subject>Reasoning</subject><subject>Rectangles</subject><subject>Secondary School Students</subject><subject>Straw</subject><subject>Student Development</subject><subject>Students</subject><subject>Triangles</subject><issn>0021-8251</issn><issn>1945-2306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNo9UctOwzAQtBBIlIfEB4BkceEUWNtxnHBDpRRQKxBtz5WTbEpKaxfbRfAx_CuuCpxWs7Mzs6sl5ITBJRegrgSAkCDzHdJhRSqT2Mx2SQeAsyTnku2TA-_nAKAYZB3yPQrrGk3wF7Rrratbo0NrDbUN7aNdYnBtRV9Qe2taM6Pa1HQY0dpt0Cg4HXDWoqdRould-4k1fUbXRiE6Otb-7Zre4gcu7GojGOrwisuYUOkFnZganQ_RckPFwEFrULtff1zGrY7IXqMXHo9_6yGZ3PXG3ftk8NR_6N4MEuRchqSErKnSiiGoTGgtKpVXBeMiw1SlgjGVS93wXEtQaQFljaVWZQN1XeYSSlGIQ3K-9V05-75GH6Zzu3YmRk45F2mR8yKLQ6fboXhfNV3FI7X7mvYeVSbTnEX6bEvPfbDun__7h_gBO0B-Sg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Barrett, Jeffrey E.</creator><creator>Clements, Douglas H.</creator><creator>Klanderman, David</creator><creator>Pennisi, Sarah-Jean</creator><creator>Polaki, Mokaeane V.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>JQ2</scope></search><sort><creationdate>20060501</creationdate><title>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</title><author>Barrett, Jeffrey E. ; Clements, Douglas H. ; Klanderman, David ; Pennisi, Sarah-Jean ; Polaki, Mokaeane V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Age Differences</topic><topic>Children</topic><topic>Cognition & reasoning</topic><topic>Comprehension</topic><topic>Coordinate systems</topic><topic>Elementary School Students</topic><topic>Geometric Concepts</topic><topic>Geometric shapes</topic><topic>Geometry</topic><topic>Grade 10</topic><topic>Grade 2</topic><topic>Identification</topic><topic>Logical Thinking</topic><topic>Mathematical Aptitude</topic><topic>Mathematical Logic</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Measurement</topic><topic>Measurement Techniques</topic><topic>New York</topic><topic>Observation</topic><topic>Reasoning</topic><topic>Rectangles</topic><topic>Secondary School Students</topic><topic>Straw</topic><topic>Student Development</topic><topic>Students</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrett, Jeffrey E.</creatorcontrib><creatorcontrib>Clements, Douglas H.</creatorcontrib><creatorcontrib>Klanderman, David</creatorcontrib><creatorcontrib>Pennisi, Sarah-Jean</creatorcontrib><creatorcontrib>Polaki, Mokaeane V.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal for research in mathematics education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrett, Jeffrey E.</au><au>Clements, Douglas H.</au><au>Klanderman, David</au><au>Pennisi, Sarah-Jean</au><au>Polaki, Mokaeane V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ765481</ericid><atitle>Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement</atitle><jtitle>Journal for research in mathematics education</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>37</volume><issue>3</issue><spage>187</spage><epage>221</epage><pages>187-221</pages><issn>0021-8251</issn><eissn>1945-2306</eissn><coden>JRMEDN</coden><abstract>This article examines students' development of levels of understanding for measurement by describing the coordination of geometric reasoning with measurement and numerical strategies. In analyzing the reasoning and argumentation of 38 Grade 2 through Grade 10 students on linear measure tasks, we found support for the application and elaboration of our previously established categorization of children's length measurement levels: (1) guessing of length values by nai've visual observation, (2) making inconsistent, uncoordinated reference to markers as units, and (3) using consistent and coordinated identification of units. We elaborated two of these categories. Observations supported sublevel distinctions between inconsistent identification (2a) and consistent yet only partially coordinated identification of units (2b). Evidence also supported a distinction between static (3a) and dynamic (3b) ways of coordinating length; we distinguish integrated abstraction (3b) from nonintegrated abstraction (3a) by examining whether students coordinate number and space schemes across multiple cases, or merely associate cases without coordinating schemes.</abstract><cop>Washington</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.2307/30035058</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8251 |
ispartof | Journal for research in mathematics education, 2006-05, Vol.37 (3), p.187-221 |
issn | 0021-8251 1945-2306 |
language | eng |
recordid | cdi_proquest_journals_223498296 |
source | JSTOR Archival Journals and Primary Sources Collection; ERIC |
subjects | Age Differences Children Cognition & reasoning Comprehension Coordinate systems Elementary School Students Geometric Concepts Geometric shapes Geometry Grade 10 Grade 2 Identification Logical Thinking Mathematical Aptitude Mathematical Logic Mathematics education Mathematics Instruction Measurement Measurement Techniques New York Observation Reasoning Rectangles Secondary School Students Straw Student Development Students Triangles |
title | Students' Coordination of Geometric Reasoning and Measuring Strategies on a Fixed Perimeter Task: Developing Mathematical Understanding of Linear Measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Students'%20Coordination%20of%20Geometric%20Reasoning%20and%20Measuring%20Strategies%20on%20a%20Fixed%20Perimeter%20Task:%20Developing%20Mathematical%20Understanding%20of%20Linear%20Measurement&rft.jtitle=Journal%20for%20research%20in%20mathematics%20education&rft.au=Barrett,%20Jeffrey%20E.&rft.date=2006-05-01&rft.volume=37&rft.issue=3&rft.spage=187&rft.epage=221&rft.pages=187-221&rft.issn=0021-8251&rft.eissn=1945-2306&rft.coden=JRMEDN&rft_id=info:doi/10.2307/30035058&rft_dat=%3Cjstor_proqu%3E30035058%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e225t-b06fc4c1e0763aa3c78c91236e474311785af28a507490bdeba7bf0ddb850b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223498296&rft_id=info:pmid/&rft_ericid=EJ765481&rft_jstor_id=30035058&rfr_iscdi=true |