Loading…
Optimal location-allocation of storage devices and renewable-based DG in distribution systems
•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find...
Saved in:
Published in: | Electric power systems research 2019-07, Vol.172, p.11-21 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583 |
container_end_page | 21 |
container_issue | |
container_start_page | 11 |
container_title | Electric power systems research |
container_volume | 172 |
creator | Home-Ortiz, Juan M. Pourakbari-Kasmaei, Mahdi Lehtonen, Matti Sanches Mantovani, José Roberto |
description | •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness. |
doi_str_mv | 10.1016/j.epsr.2019.02.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235019301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779619300690</els_id><sourcerecordid>2235019301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmBN8SexYYkEFClKlLjAiy3GOkaM0DnZa1LcnpbAynTP837l8CF1TklNCxW2bw5BizghVOWE5ofwEzWglecZIIU7RjHBZZVIqcY4uUmoJIULJcobe18PoN6bDXbBm9KHPTPfX4uBwGkM0H4Ab2HkLCZu-wRF6-DJ1B1ltEjT4YYl9jxufxujr7Q-Z9mmETbpEZ850Ca5-6xy9PT2-Lp6z1Xr5srhfZZZXYswM4xYEl0rWzFLLqSrLiitDDHesdM4aJlUJlrm6skSpwgnWWCkKKUxRTdE5ujnOHWL43EIadRu2sZ9WasZ4OVnhk5I5YseUjSGlCE4Pcfo97jUl-qBRt_qgUR80asL0xEzQ3RGC6f6dh6iT9dBbaHwEO-om-P_wb25WfD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235019301</pqid></control><display><type>article</type><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><source>Elsevier</source><creator>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</creator><creatorcontrib>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</creatorcontrib><description>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2019.02.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative energy ; Cluster analysis ; Clustering ; Conic programming ; Convexity ; Decision making ; Distributed generation ; Energy storage ; Gas turbines ; Mixed integer ; Multistage distribution system planning ; Radial distribution ; Renewable energy sources ; Sensitivity analysis ; Stochastic programming ; Turbines ; Uncertainty ; Vector quantization ; Wind power ; Wind turbines</subject><ispartof>Electric power systems research, 2019-07, Vol.172, p.11-21</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</citedby><cites>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</cites><orcidid>0000-0003-4803-7753 ; 0000-0002-9979-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Home-Ortiz, Juan M.</creatorcontrib><creatorcontrib>Pourakbari-Kasmaei, Mahdi</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Sanches Mantovani, José Roberto</creatorcontrib><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><title>Electric power systems research</title><description>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</description><subject>Alternative energy</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Conic programming</subject><subject>Convexity</subject><subject>Decision making</subject><subject>Distributed generation</subject><subject>Energy storage</subject><subject>Gas turbines</subject><subject>Mixed integer</subject><subject>Multistage distribution system planning</subject><subject>Radial distribution</subject><subject>Renewable energy sources</subject><subject>Sensitivity analysis</subject><subject>Stochastic programming</subject><subject>Turbines</subject><subject>Uncertainty</subject><subject>Vector quantization</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmBN8SexYYkEFClKlLjAiy3GOkaM0DnZa1LcnpbAynTP837l8CF1TklNCxW2bw5BizghVOWE5ofwEzWglecZIIU7RjHBZZVIqcY4uUmoJIULJcobe18PoN6bDXbBm9KHPTPfX4uBwGkM0H4Ab2HkLCZu-wRF6-DJ1B1ltEjT4YYl9jxufxujr7Q-Z9mmETbpEZ850Ca5-6xy9PT2-Lp6z1Xr5srhfZZZXYswM4xYEl0rWzFLLqSrLiitDDHesdM4aJlUJlrm6skSpwgnWWCkKKUxRTdE5ujnOHWL43EIadRu2sZ9WasZ4OVnhk5I5YseUjSGlCE4Pcfo97jUl-qBRt_qgUR80asL0xEzQ3RGC6f6dh6iT9dBbaHwEO-om-P_wb25WfD0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Home-Ortiz, Juan M.</creator><creator>Pourakbari-Kasmaei, Mahdi</creator><creator>Lehtonen, Matti</creator><creator>Sanches Mantovani, José Roberto</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4803-7753</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></search><sort><creationdate>20190701</creationdate><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><author>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Conic programming</topic><topic>Convexity</topic><topic>Decision making</topic><topic>Distributed generation</topic><topic>Energy storage</topic><topic>Gas turbines</topic><topic>Mixed integer</topic><topic>Multistage distribution system planning</topic><topic>Radial distribution</topic><topic>Renewable energy sources</topic><topic>Sensitivity analysis</topic><topic>Stochastic programming</topic><topic>Turbines</topic><topic>Uncertainty</topic><topic>Vector quantization</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Home-Ortiz, Juan M.</creatorcontrib><creatorcontrib>Pourakbari-Kasmaei, Mahdi</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Sanches Mantovani, José Roberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Home-Ortiz, Juan M.</au><au>Pourakbari-Kasmaei, Mahdi</au><au>Lehtonen, Matti</au><au>Sanches Mantovani, José Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</atitle><jtitle>Electric power systems research</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>172</volume><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2019.02.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4803-7753</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2019-07, Vol.172, p.11-21 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2235019301 |
source | Elsevier |
subjects | Alternative energy Cluster analysis Clustering Conic programming Convexity Decision making Distributed generation Energy storage Gas turbines Mixed integer Multistage distribution system planning Radial distribution Renewable energy sources Sensitivity analysis Stochastic programming Turbines Uncertainty Vector quantization Wind power Wind turbines |
title | Optimal location-allocation of storage devices and renewable-based DG in distribution systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20location-allocation%20of%20storage%20devices%20and%20renewable-based%20DG%20in%20distribution%20systems&rft.jtitle=Electric%20power%20systems%20research&rft.au=Home-Ortiz,%20Juan%20M.&rft.date=2019-07-01&rft.volume=172&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2019.02.013&rft_dat=%3Cproquest_cross%3E2235019301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235019301&rft_id=info:pmid/&rfr_iscdi=true |