Loading…

Optimal location-allocation of storage devices and renewable-based DG in distribution systems

•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research 2019-07, Vol.172, p.11-21
Main Authors: Home-Ortiz, Juan M., Pourakbari-Kasmaei, Mahdi, Lehtonen, Matti, Sanches Mantovani, José Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583
cites cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583
container_end_page 21
container_issue
container_start_page 11
container_title Electric power systems research
container_volume 172
creator Home-Ortiz, Juan M.
Pourakbari-Kasmaei, Mahdi
Lehtonen, Matti
Sanches Mantovani, José Roberto
description •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.
doi_str_mv 10.1016/j.epsr.2019.02.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235019301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779619300690</els_id><sourcerecordid>2235019301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmBN8SexYYkEFClKlLjAiy3GOkaM0DnZa1LcnpbAynTP837l8CF1TklNCxW2bw5BizghVOWE5ofwEzWglecZIIU7RjHBZZVIqcY4uUmoJIULJcobe18PoN6bDXbBm9KHPTPfX4uBwGkM0H4Ab2HkLCZu-wRF6-DJ1B1ltEjT4YYl9jxufxujr7Q-Z9mmETbpEZ850Ca5-6xy9PT2-Lp6z1Xr5srhfZZZXYswM4xYEl0rWzFLLqSrLiitDDHesdM4aJlUJlrm6skSpwgnWWCkKKUxRTdE5ujnOHWL43EIadRu2sZ9WasZ4OVnhk5I5YseUjSGlCE4Pcfo97jUl-qBRt_qgUR80asL0xEzQ3RGC6f6dh6iT9dBbaHwEO-om-P_wb25WfD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235019301</pqid></control><display><type>article</type><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><source>Elsevier</source><creator>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</creator><creatorcontrib>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</creatorcontrib><description>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2019.02.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative energy ; Cluster analysis ; Clustering ; Conic programming ; Convexity ; Decision making ; Distributed generation ; Energy storage ; Gas turbines ; Mixed integer ; Multistage distribution system planning ; Radial distribution ; Renewable energy sources ; Sensitivity analysis ; Stochastic programming ; Turbines ; Uncertainty ; Vector quantization ; Wind power ; Wind turbines</subject><ispartof>Electric power systems research, 2019-07, Vol.172, p.11-21</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</citedby><cites>FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</cites><orcidid>0000-0003-4803-7753 ; 0000-0002-9979-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Home-Ortiz, Juan M.</creatorcontrib><creatorcontrib>Pourakbari-Kasmaei, Mahdi</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Sanches Mantovani, José Roberto</creatorcontrib><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><title>Electric power systems research</title><description>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</description><subject>Alternative energy</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Conic programming</subject><subject>Convexity</subject><subject>Decision making</subject><subject>Distributed generation</subject><subject>Energy storage</subject><subject>Gas turbines</subject><subject>Mixed integer</subject><subject>Multistage distribution system planning</subject><subject>Radial distribution</subject><subject>Renewable energy sources</subject><subject>Sensitivity analysis</subject><subject>Stochastic programming</subject><subject>Turbines</subject><subject>Uncertainty</subject><subject>Vector quantization</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmBN8SexYYkEFClKlLjAiy3GOkaM0DnZa1LcnpbAynTP837l8CF1TklNCxW2bw5BizghVOWE5ofwEzWglecZIIU7RjHBZZVIqcY4uUmoJIULJcobe18PoN6bDXbBm9KHPTPfX4uBwGkM0H4Ab2HkLCZu-wRF6-DJ1B1ltEjT4YYl9jxufxujr7Q-Z9mmETbpEZ850Ca5-6xy9PT2-Lp6z1Xr5srhfZZZXYswM4xYEl0rWzFLLqSrLiitDDHesdM4aJlUJlrm6skSpwgnWWCkKKUxRTdE5ujnOHWL43EIadRu2sZ9WasZ4OVnhk5I5YseUjSGlCE4Pcfo97jUl-qBRt_qgUR80asL0xEzQ3RGC6f6dh6iT9dBbaHwEO-om-P_wb25WfD0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Home-Ortiz, Juan M.</creator><creator>Pourakbari-Kasmaei, Mahdi</creator><creator>Lehtonen, Matti</creator><creator>Sanches Mantovani, José Roberto</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4803-7753</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></search><sort><creationdate>20190701</creationdate><title>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</title><author>Home-Ortiz, Juan M. ; Pourakbari-Kasmaei, Mahdi ; Lehtonen, Matti ; Sanches Mantovani, José Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Conic programming</topic><topic>Convexity</topic><topic>Decision making</topic><topic>Distributed generation</topic><topic>Energy storage</topic><topic>Gas turbines</topic><topic>Mixed integer</topic><topic>Multistage distribution system planning</topic><topic>Radial distribution</topic><topic>Renewable energy sources</topic><topic>Sensitivity analysis</topic><topic>Stochastic programming</topic><topic>Turbines</topic><topic>Uncertainty</topic><topic>Vector quantization</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Home-Ortiz, Juan M.</creatorcontrib><creatorcontrib>Pourakbari-Kasmaei, Mahdi</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Sanches Mantovani, José Roberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Home-Ortiz, Juan M.</au><au>Pourakbari-Kasmaei, Mahdi</au><au>Lehtonen, Matti</au><au>Sanches Mantovani, José Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal location-allocation of storage devices and renewable-based DG in distribution systems</atitle><jtitle>Electric power systems research</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>172</volume><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2019.02.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4803-7753</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2019-07, Vol.172, p.11-21
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2235019301
source Elsevier
subjects Alternative energy
Cluster analysis
Clustering
Conic programming
Convexity
Decision making
Distributed generation
Energy storage
Gas turbines
Mixed integer
Multistage distribution system planning
Radial distribution
Renewable energy sources
Sensitivity analysis
Stochastic programming
Turbines
Uncertainty
Vector quantization
Wind power
Wind turbines
title Optimal location-allocation of storage devices and renewable-based DG in distribution systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20location-allocation%20of%20storage%20devices%20and%20renewable-based%20DG%20in%20distribution%20systems&rft.jtitle=Electric%20power%20systems%20research&rft.au=Home-Ortiz,%20Juan%20M.&rft.date=2019-07-01&rft.volume=172&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2019.02.013&rft_dat=%3Cproquest_cross%3E2235019301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-a23ce63797b2c1c31955839a0a3f25ffca2795ec2fb8c0994f62dc76476a48583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235019301&rft_id=info:pmid/&rfr_iscdi=true