Loading…

Asymptotic Theory of Stability for One Class of Internal Flows

The theory of perturbations is constructed for a combination of Couette and Poiseuille flows. Asymptotic analysis of four types of neutral (or nearly neutral) linear eigen oscillations is presented.

Saved in:
Bibliographic Details
Published in:Fluid dynamics 2019-03, Vol.54 (2), p.149-158
Main Author: Zhuk, V. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c307t-1ca0829649364e27756a6aeb3ca23436f9adc1e864f111b52239f29d1aa7c3103
container_end_page 158
container_issue 2
container_start_page 149
container_title Fluid dynamics
container_volume 54
creator Zhuk, V. I.
description The theory of perturbations is constructed for a combination of Couette and Poiseuille flows. Asymptotic analysis of four types of neutral (or nearly neutral) linear eigen oscillations is presented.
doi_str_mv 10.1134/S0015462819020150
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2235158447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722938870</galeid><sourcerecordid>A722938870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-1ca0829649364e27756a6aeb3ca23436f9adc1e864f111b52239f29d1aa7c3103</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4Abwuet2aSbD4uQim2Fgo9tJ6XNE3qlu2mJimy_95dVvAgMocZ5n3weAg9Ap4AUPa8wRgKxokEhUl34is0gkLQXBZYXKNRD-c9fovuYjxijJXgZIReprE9nZNPlcm2H9aHNvMu2yS9q-oqtZnzIVs3NpvVOsYeWjbJhkbX2bz2X_Ee3ThdR_vws8foff66nb3lq_ViOZuuckOxSDkYjSVRnCnKmSVCFFxzbXfUaEIZ5U7pvQErOXMAsCsIocoRtQethaGA6Rg9Db7n4D8vNqby6C99jFh23AIKyZjoWJOBddC1LavG-RS06WZvT5XxjXVV958KQhSVUvS2MAhM8DEG68pzqE46tCXgsu-1_NNrpyGDJnbc5mDDb5T_Rd9_yHbf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235158447</pqid></control><display><type>article</type><title>Asymptotic Theory of Stability for One Class of Internal Flows</title><source>Springer Link</source><creator>Zhuk, V. I.</creator><creatorcontrib>Zhuk, V. I.</creatorcontrib><description>The theory of perturbations is constructed for a combination of Couette and Poiseuille flows. Asymptotic analysis of four types of neutral (or nearly neutral) linear eigen oscillations is presented.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462819020150</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Asymptotic properties ; Classical and Continuum Physics ; Classical Mechanics ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Internal waves ; Physics ; Physics and Astronomy</subject><ispartof>Fluid dynamics, 2019-03, Vol.54 (2), p.149-158</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-1ca0829649364e27756a6aeb3ca23436f9adc1e864f111b52239f29d1aa7c3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhuk, V. I.</creatorcontrib><title>Asymptotic Theory of Stability for One Class of Internal Flows</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The theory of perturbations is constructed for a combination of Couette and Poiseuille flows. Asymptotic analysis of four types of neutral (or nearly neutral) linear eigen oscillations is presented.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Internal waves</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4Abwuet2aSbD4uQim2Fgo9tJ6XNE3qlu2mJimy_95dVvAgMocZ5n3weAg9Ap4AUPa8wRgKxokEhUl34is0gkLQXBZYXKNRD-c9fovuYjxijJXgZIReprE9nZNPlcm2H9aHNvMu2yS9q-oqtZnzIVs3NpvVOsYeWjbJhkbX2bz2X_Ee3ThdR_vws8foff66nb3lq_ViOZuuckOxSDkYjSVRnCnKmSVCFFxzbXfUaEIZ5U7pvQErOXMAsCsIocoRtQethaGA6Rg9Db7n4D8vNqby6C99jFh23AIKyZjoWJOBddC1LavG-RS06WZvT5XxjXVV958KQhSVUvS2MAhM8DEG68pzqE46tCXgsu-1_NNrpyGDJnbc5mDDb5T_Rd9_yHbf</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhuk, V. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Asymptotic Theory of Stability for One Class of Internal Flows</title><author>Zhuk, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-1ca0829649364e27756a6aeb3ca23436f9adc1e864f111b52239f29d1aa7c3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Internal waves</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuk, V. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuk, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Theory of Stability for One Class of Internal Flows</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>54</volume><issue>2</issue><spage>149</spage><epage>158</epage><pages>149-158</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The theory of perturbations is constructed for a combination of Couette and Poiseuille flows. Asymptotic analysis of four types of neutral (or nearly neutral) linear eigen oscillations is presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462819020150</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2019-03, Vol.54 (2), p.149-158
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2235158447
source Springer Link
subjects Analysis
Asymptotic properties
Classical and Continuum Physics
Classical Mechanics
Engineering Fluid Dynamics
Fluid- and Aerodynamics
Internal waves
Physics
Physics and Astronomy
title Asymptotic Theory of Stability for One Class of Internal Flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Theory%20of%20Stability%20for%20One%20Class%20of%20Internal%20Flows&rft.jtitle=Fluid%20dynamics&rft.au=Zhuk,%20V.%20I.&rft.date=2019-03-01&rft.volume=54&rft.issue=2&rft.spage=149&rft.epage=158&rft.pages=149-158&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462819020150&rft_dat=%3Cgale_proqu%3EA722938870%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-1ca0829649364e27756a6aeb3ca23436f9adc1e864f111b52239f29d1aa7c3103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235158447&rft_id=info:pmid/&rft_galeid=A722938870&rfr_iscdi=true