Loading…
Broken-up Spectra of the Loop-top Hard X-ray Source during a Solar Limb Flare
Solar hard X-rays (HXRs) appear in the form of either footpoint sources or coronal sources, and each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up po...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solar hard X-rays (HXRs) appear in the form of either footpoint sources or coronal sources, and each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum with the break energy around a few hundred keV based on spatially-integrated spectral analysis, without distinguishing the contributions from individual sources. In this paper, we report the broken-up spectra of a coronal source studied using HXR data recorded by Ramaty High Energy Solar Spectroscopic Imager (RHESSI) during the SOL2017-09-10T16:06 (GOES class X8.2) flare. The flare occurred behind the western limb with its foot-point sources mostly occulted by the disk, and we could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, \(p = 2\). In this case, we found the resulting \textit{RHESSI} temperature (~30 MK) similar to the GOES soft X-ray temperature and break energies of 45--60 keV. Above the break energy the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference of spectral indices below and above the break energy increases from 1.5 to 5 with time. We, however, note that when \(p = 2\) is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10 MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed. |
---|---|
ISSN: | 2331-8422 |