Loading…
Simulating quantum field theory in curved spacetime with quantum many-body systems
This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yang, Run-Qiu Liu, Hui Zhu, Shining Luo, Le Rong-Gen Cai |
description | This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics. |
doi_str_mv | 10.48550/arxiv.1906.01927 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2235953952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235953952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023</originalsourceid><addsrcrecordid>eNo9j8tqwzAUREWh0JDmA7oTdG1XvleypWUJfUGg0GYfZOu6UfAjseS0_vsaGroaGObMMIzdZSKVWinxYIcff04zI_JUZAaKK7YAxCzREuCGrUI4CCEgL0ApXLCPT9-OjY2---Kn0XZxbHntqXE87qkfJu47Xo3DmRwPR1tR9C3xbx_3_-nWdlNS9m7iYQqR2nDLrmvbBFpddMm2z0_b9WuyeX95Wz9uEqsAElOhVrmsrAO0tXRkjCqrcr6gBSFKqwmLsnQSZ88ogxmB004bkoVRAnDJ7v9qj0N_GinE3aEfh25e3AHgjKBRgL9_BFID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235953952</pqid></control><display><type>article</type><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><source>Publicly Available Content Database</source><creator>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</creator><creatorcontrib>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</creatorcontrib><description>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.01927</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Black holes ; Chaos theory ; Computer simulation ; Entanglement ; Equivalence ; Hawking radiation ; Quantum theory ; Spacetime ; Two dimensional models</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2235953952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Rong-Gen Cai</creatorcontrib><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><title>arXiv.org</title><description>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</description><subject>Black holes</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Entanglement</subject><subject>Equivalence</subject><subject>Hawking radiation</subject><subject>Quantum theory</subject><subject>Spacetime</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9j8tqwzAUREWh0JDmA7oTdG1XvleypWUJfUGg0GYfZOu6UfAjseS0_vsaGroaGObMMIzdZSKVWinxYIcff04zI_JUZAaKK7YAxCzREuCGrUI4CCEgL0ApXLCPT9-OjY2---Kn0XZxbHntqXE87qkfJu47Xo3DmRwPR1tR9C3xbx_3_-nWdlNS9m7iYQqR2nDLrmvbBFpddMm2z0_b9WuyeX95Wz9uEqsAElOhVrmsrAO0tXRkjCqrcr6gBSFKqwmLsnQSZ88ogxmB004bkoVRAnDJ7v9qj0N_GinE3aEfh25e3AHgjKBRgL9_BFID</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Yang, Run-Qiu</creator><creator>Liu, Hui</creator><creator>Zhu, Shining</creator><creator>Luo, Le</creator><creator>Rong-Gen Cai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200505</creationdate><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><author>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Entanglement</topic><topic>Equivalence</topic><topic>Hawking radiation</topic><topic>Quantum theory</topic><topic>Spacetime</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Rong-Gen Cai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Run-Qiu</au><au>Liu, Hui</au><au>Zhu, Shining</au><au>Luo, Le</au><au>Rong-Gen Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating quantum field theory in curved spacetime with quantum many-body systems</atitle><jtitle>arXiv.org</jtitle><date>2020-05-05</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.01927</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2235953952 |
source | Publicly Available Content Database |
subjects | Black holes Chaos theory Computer simulation Entanglement Equivalence Hawking radiation Quantum theory Spacetime Two dimensional models |
title | Simulating quantum field theory in curved spacetime with quantum many-body systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20quantum%20field%20theory%20in%20curved%20spacetime%20with%20quantum%20many-body%20systems&rft.jtitle=arXiv.org&rft.au=Yang,%20Run-Qiu&rft.date=2020-05-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.01927&rft_dat=%3Cproquest%3E2235953952%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235953952&rft_id=info:pmid/&rfr_iscdi=true |