Loading…

Simulating quantum field theory in curved spacetime with quantum many-body systems

This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-05
Main Authors: Yang, Run-Qiu, Liu, Hui, Zhu, Shining, Luo, Le, Rong-Gen Cai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Run-Qiu
Liu, Hui
Zhu, Shining
Luo, Le
Rong-Gen Cai
description This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.
doi_str_mv 10.48550/arxiv.1906.01927
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2235953952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235953952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023</originalsourceid><addsrcrecordid>eNo9j8tqwzAUREWh0JDmA7oTdG1XvleypWUJfUGg0GYfZOu6UfAjseS0_vsaGroaGObMMIzdZSKVWinxYIcff04zI_JUZAaKK7YAxCzREuCGrUI4CCEgL0ApXLCPT9-OjY2---Kn0XZxbHntqXE87qkfJu47Xo3DmRwPR1tR9C3xbx_3_-nWdlNS9m7iYQqR2nDLrmvbBFpddMm2z0_b9WuyeX95Wz9uEqsAElOhVrmsrAO0tXRkjCqrcr6gBSFKqwmLsnQSZ88ogxmB004bkoVRAnDJ7v9qj0N_GinE3aEfh25e3AHgjKBRgL9_BFID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235953952</pqid></control><display><type>article</type><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><source>Publicly Available Content Database</source><creator>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</creator><creatorcontrib>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</creatorcontrib><description>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.01927</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Black holes ; Chaos theory ; Computer simulation ; Entanglement ; Equivalence ; Hawking radiation ; Quantum theory ; Spacetime ; Two dimensional models</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2235953952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Rong-Gen Cai</creatorcontrib><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><title>arXiv.org</title><description>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</description><subject>Black holes</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Entanglement</subject><subject>Equivalence</subject><subject>Hawking radiation</subject><subject>Quantum theory</subject><subject>Spacetime</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9j8tqwzAUREWh0JDmA7oTdG1XvleypWUJfUGg0GYfZOu6UfAjseS0_vsaGroaGObMMIzdZSKVWinxYIcff04zI_JUZAaKK7YAxCzREuCGrUI4CCEgL0ApXLCPT9-OjY2---Kn0XZxbHntqXE87qkfJu47Xo3DmRwPR1tR9C3xbx_3_-nWdlNS9m7iYQqR2nDLrmvbBFpddMm2z0_b9WuyeX95Wz9uEqsAElOhVrmsrAO0tXRkjCqrcr6gBSFKqwmLsnQSZ88ogxmB004bkoVRAnDJ7v9qj0N_GinE3aEfh25e3AHgjKBRgL9_BFID</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Yang, Run-Qiu</creator><creator>Liu, Hui</creator><creator>Zhu, Shining</creator><creator>Luo, Le</creator><creator>Rong-Gen Cai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200505</creationdate><title>Simulating quantum field theory in curved spacetime with quantum many-body systems</title><author>Yang, Run-Qiu ; Liu, Hui ; Zhu, Shining ; Luo, Le ; Rong-Gen Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Entanglement</topic><topic>Equivalence</topic><topic>Hawking radiation</topic><topic>Quantum theory</topic><topic>Spacetime</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Rong-Gen Cai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Run-Qiu</au><au>Liu, Hui</au><au>Zhu, Shining</au><au>Luo, Le</au><au>Rong-Gen Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating quantum field theory in curved spacetime with quantum many-body systems</atitle><jtitle>arXiv.org</jtitle><date>2020-05-05</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a new general framework to build a one-to-one correspondence between quantum field theories in static 1+1 dimensional curved spacetime and quantum many-body systems. We show that a massless scalar field in an arbitrary 2-dimensional static spacetime is always equivalent to a site-dependent bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped ions system is suggested. As applications of the analogue gravity model, we show that they can be used to simulate Hawking radiation of black hole and to study its entanglement. We also show in the analogue model that black holes are most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about how to get some insights about quantum many-body systems from back hole physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.01927</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2235953952
source Publicly Available Content Database
subjects Black holes
Chaos theory
Computer simulation
Entanglement
Equivalence
Hawking radiation
Quantum theory
Spacetime
Two dimensional models
title Simulating quantum field theory in curved spacetime with quantum many-body systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20quantum%20field%20theory%20in%20curved%20spacetime%20with%20quantum%20many-body%20systems&rft.jtitle=arXiv.org&rft.au=Yang,%20Run-Qiu&rft.date=2020-05-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.01927&rft_dat=%3Cproquest%3E2235953952%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-9c38564cad23af4de995bcb85580e334a8e37bbd43b8595931e2d8d89e4795023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235953952&rft_id=info:pmid/&rfr_iscdi=true