Loading…

The effects of landscape scale on greenery and traffic relationships with urban birds and butterflies

Actions and policies to enhance biodiversity in the urban landscape must match the spatial scale at which biodiversity responds to the management and target variables. To this end, we compare the importance and effect of different kinds of greenery cover and road-lane density on bird and butterfly s...

Full description

Saved in:
Bibliographic Details
Published in:Urban ecosystems 2019-10, Vol.22 (5), p.917-926
Main Authors: Chong, Kwek Yan, Teo, Siyang, Kurukulasuriya, Buddhima, Chung, Yi Fei, Giam, Xingli, Tan, Hugh T. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Actions and policies to enhance biodiversity in the urban landscape must match the spatial scale at which biodiversity responds to the management and target variables. To this end, we compare the importance and effect of different kinds of greenery cover and road-lane density on bird and butterfly species richness between two landscape scales: 50-m versus 126-m radii around point counts (equivalent to areas of 0.8 h and 5 ha, respectively). We also compared the results against those of an earlier study using 500-m walking transects with widths of 100 m (i.e., 5 ha). Road lane density was more important at the 126-m than 50-m radius for both birds and butterflies. For birds, natural vegetation or forest cover and cultivated shrub cover were also more important at 126-m radius whereas the cultivated tree canopy cover was more important at 50-m radius. Cultivated tree cover and natural vegetation or forest cover were positively associated with species richness while road lane density and cultivated shrub cover were negatively associated with species richness. The results from point counts generally corroborate the results from the transects-based study, except that the short-duration point counts performed poorly in sampling butterflies. Our results indicate that in designing urban greenery policy, the plot sizes of individual developments is an appropriate spatial scale for the stipulation of tree cover targets, while urban planners have more flexibility to allocate natural greenery at broader spatial scales.
ISSN:1083-8155
1573-1642
DOI:10.1007/s11252-019-00871-9