Loading…

Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids

We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on a class of grids in 2D and 3D Cartesian geometry that are regular at a coarse level but arbitrary within the coarse blocks. We describe these algorithms and show that they always execute the full eight-oc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-06
Main Authors: Adams, Michael P, Adams, Marvin L, Hawkins, W Daryl, Smith, Timmie, Rauchwerger, Lawrence, Amato, Nancy M, Bailey, Teresa S, Falgout, Robert D, Kunen, Adam, Brown, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adams, Michael P
Adams, Marvin L
Hawkins, W Daryl
Smith, Timmie
Rauchwerger, Lawrence
Amato, Nancy M
Bailey, Teresa S
Falgout, Robert D
Kunen, Adam
Brown, Peter
description We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on a class of grids in 2D and 3D Cartesian geometry that are regular at a coarse level but arbitrary within the coarse blocks. We describe these algorithms and show that they always execute the full eight-octant (or four-quadrant if 2D) sweep in the minimum possible number of stages for a given Px x Py x Pz partitioning. Computational results confirm that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. Our PDT transport code has achieved approximately 68% parallel efficiency with > 1.5M parallel threads, relative to 8 threads, on a simple weak-scaling problem with only three energy groups, 10 direction per octant, and 4096 cells/core. We demonstrate similar efficiencies on a much more realistic set of nuclear-reactor test problems, with unstructured meshes that resolve fine geometric details. These results demonstrate that discrete-ordinates transport sweeps can be executed with high efficiency using more than 106 parallel processes.
doi_str_mv 10.48550/arxiv.1906.02950
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2237713963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237713963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-70c3f0237cde47d78c3ec1cd6309dc3b545b194c87ca004d68d90242251eb02c3</originalsourceid><addsrcrecordid>eNotjkFLwzAYQIMgOOZ-wG4Bz61f8iVNc5SiUxhs0N5HmmTQkbU1aaf-ewt6erf3HiFbBrkopYRnE7-7W840FDlwLeGOrDgiy0rB-QPZpHQBAF4oLiWuSHWMw8204Ycexqm7mkCPJpoQfKBNNH0ahzjR-sv7MdGhp7W_dlk9xdlOc_SO7mLn0iO5P5uQ_Oafa9K8vTbVe7Y_7D6ql31mJMdMgcUzcFTWeaGcKi16y6wrELSz2EohW6aFLZU1AMIVpdPAl2nJfAvc4po8_WnHOHzOPk2nyzDHfime-KJVDHWB-At9C0uU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237713963</pqid></control><display><type>article</type><title>Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids</title><source>Publicly Available Content (ProQuest)</source><creator>Adams, Michael P ; Adams, Marvin L ; Hawkins, W Daryl ; Smith, Timmie ; Rauchwerger, Lawrence ; Amato, Nancy M ; Bailey, Teresa S ; Falgout, Robert D ; Kunen, Adam ; Brown, Peter</creator><creatorcontrib>Adams, Michael P ; Adams, Marvin L ; Hawkins, W Daryl ; Smith, Timmie ; Rauchwerger, Lawrence ; Amato, Nancy M ; Bailey, Teresa S ; Falgout, Robert D ; Kunen, Adam ; Brown, Peter</creatorcontrib><description>We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on a class of grids in 2D and 3D Cartesian geometry that are regular at a coarse level but arbitrary within the coarse blocks. We describe these algorithms and show that they always execute the full eight-octant (or four-quadrant if 2D) sweep in the minimum possible number of stages for a given Px x Py x Pz partitioning. Computational results confirm that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. Our PDT transport code has achieved approximately 68% parallel efficiency with &gt; 1.5M parallel threads, relative to 8 threads, on a simple weak-scaling problem with only three energy groups, 10 direction per octant, and 4096 cells/core. We demonstrate similar efficiencies on a much more realistic set of nuclear-reactor test problems, with unstructured meshes that resolve fine geometric details. These results demonstrate that discrete-ordinates transport sweeps can be executed with high efficiency using more than 106 parallel processes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.02950</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Structured grids (mathematics)</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2237713963?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Adams, Michael P</creatorcontrib><creatorcontrib>Adams, Marvin L</creatorcontrib><creatorcontrib>Hawkins, W Daryl</creatorcontrib><creatorcontrib>Smith, Timmie</creatorcontrib><creatorcontrib>Rauchwerger, Lawrence</creatorcontrib><creatorcontrib>Amato, Nancy M</creatorcontrib><creatorcontrib>Bailey, Teresa S</creatorcontrib><creatorcontrib>Falgout, Robert D</creatorcontrib><creatorcontrib>Kunen, Adam</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><title>Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids</title><title>arXiv.org</title><description>We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on a class of grids in 2D and 3D Cartesian geometry that are regular at a coarse level but arbitrary within the coarse blocks. We describe these algorithms and show that they always execute the full eight-octant (or four-quadrant if 2D) sweep in the minimum possible number of stages for a given Px x Py x Pz partitioning. Computational results confirm that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. Our PDT transport code has achieved approximately 68% parallel efficiency with &gt; 1.5M parallel threads, relative to 8 threads, on a simple weak-scaling problem with only three energy groups, 10 direction per octant, and 4096 cells/core. We demonstrate similar efficiencies on a much more realistic set of nuclear-reactor test problems, with unstructured meshes that resolve fine geometric details. These results demonstrate that discrete-ordinates transport sweeps can be executed with high efficiency using more than 106 parallel processes.</description><subject>Algorithms</subject><subject>Structured grids (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYQIMgOOZ-wG4Bz61f8iVNc5SiUxhs0N5HmmTQkbU1aaf-ewt6erf3HiFbBrkopYRnE7-7W840FDlwLeGOrDgiy0rB-QPZpHQBAF4oLiWuSHWMw8204Ycexqm7mkCPJpoQfKBNNH0ahzjR-sv7MdGhp7W_dlk9xdlOc_SO7mLn0iO5P5uQ_Oafa9K8vTbVe7Y_7D6ql31mJMdMgcUzcFTWeaGcKi16y6wrELSz2EohW6aFLZU1AMIVpdPAl2nJfAvc4po8_WnHOHzOPk2nyzDHfime-KJVDHWB-At9C0uU</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Adams, Michael P</creator><creator>Adams, Marvin L</creator><creator>Hawkins, W Daryl</creator><creator>Smith, Timmie</creator><creator>Rauchwerger, Lawrence</creator><creator>Amato, Nancy M</creator><creator>Bailey, Teresa S</creator><creator>Falgout, Robert D</creator><creator>Kunen, Adam</creator><creator>Brown, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190607</creationdate><title>Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids</title><author>Adams, Michael P ; Adams, Marvin L ; Hawkins, W Daryl ; Smith, Timmie ; Rauchwerger, Lawrence ; Amato, Nancy M ; Bailey, Teresa S ; Falgout, Robert D ; Kunen, Adam ; Brown, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-70c3f0237cde47d78c3ec1cd6309dc3b545b194c87ca004d68d90242251eb02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Structured grids (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Adams, Michael P</creatorcontrib><creatorcontrib>Adams, Marvin L</creatorcontrib><creatorcontrib>Hawkins, W Daryl</creatorcontrib><creatorcontrib>Smith, Timmie</creatorcontrib><creatorcontrib>Rauchwerger, Lawrence</creatorcontrib><creatorcontrib>Amato, Nancy M</creatorcontrib><creatorcontrib>Bailey, Teresa S</creatorcontrib><creatorcontrib>Falgout, Robert D</creatorcontrib><creatorcontrib>Kunen, Adam</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Michael P</au><au>Adams, Marvin L</au><au>Hawkins, W Daryl</au><au>Smith, Timmie</au><au>Rauchwerger, Lawrence</au><au>Amato, Nancy M</au><au>Bailey, Teresa S</au><au>Falgout, Robert D</au><au>Kunen, Adam</au><au>Brown, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids</atitle><jtitle>arXiv.org</jtitle><date>2019-06-07</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on a class of grids in 2D and 3D Cartesian geometry that are regular at a coarse level but arbitrary within the coarse blocks. We describe these algorithms and show that they always execute the full eight-octant (or four-quadrant if 2D) sweep in the minimum possible number of stages for a given Px x Py x Pz partitioning. Computational results confirm that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. Our PDT transport code has achieved approximately 68% parallel efficiency with &gt; 1.5M parallel threads, relative to 8 threads, on a simple weak-scaling problem with only three energy groups, 10 direction per octant, and 4096 cells/core. We demonstrate similar efficiencies on a much more realistic set of nuclear-reactor test problems, with unstructured meshes that resolve fine geometric details. These results demonstrate that discrete-ordinates transport sweeps can be executed with high efficiency using more than 106 parallel processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.02950</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2237713963
source Publicly Available Content (ProQuest)
subjects Algorithms
Structured grids (mathematics)
title Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Provably%20Optimal%20Parallel%20Transport%20Sweeps%20on%20Semi-Structured%20Grids&rft.jtitle=arXiv.org&rft.au=Adams,%20Michael%20P&rft.date=2019-06-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.02950&rft_dat=%3Cproquest%3E2237713963%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-70c3f0237cde47d78c3ec1cd6309dc3b545b194c87ca004d68d90242251eb02c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237713963&rft_id=info:pmid/&rfr_iscdi=true