Loading…

Compressing RNNs for IoT devices by 15-38x using Kronecker Products

Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for re...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-01
Main Authors: Thakker, Urmish, Beu, Jesse, Gope, Dibakar, Chu, Zhou, Fedorov, Igor, Dasika, Ganesh, Mattina, Matthew
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thakker, Urmish
Beu, Jesse
Gope, Dibakar
Chu, Zhou
Fedorov, Igor
Dasika, Ganesh
Mattina, Matthew
description Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2237714642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237714642</sourcerecordid><originalsourceid>FETCH-proquest_journals_22377146423</originalsourceid><addsrcrecordid>eNqNys0KglAQQOFLECTlOwy0FnSuf3spikAi3EvpNbRybMYb9fZF9ACtzuJ8E-Wg1oGXhogz5Yp0vu9jnGAUaUdlGd0GNiJtf4ZDngs0xLClAmrzaCsjcHpBEHk6fYL9oh1Tb6qLYdgz1bYaZaGmzfEqxv11rpbrVZFtvIHpbo2MZUeW-88qEXWSBGEcov5PvQFG5DjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237714642</pqid></control><display><type>article</type><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><source>Publicly Available Content (ProQuest)</source><creator>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</creator><creatorcontrib>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</creatorcontrib><description>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Benchmarks ; Compressing ; Counting ; Neural networks ; Recurrent neural networks ; Video compression</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2237714642?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Thakker, Urmish</creatorcontrib><creatorcontrib>Beu, Jesse</creatorcontrib><creatorcontrib>Gope, Dibakar</creatorcontrib><creatorcontrib>Chu, Zhou</creatorcontrib><creatorcontrib>Fedorov, Igor</creatorcontrib><creatorcontrib>Dasika, Ganesh</creatorcontrib><creatorcontrib>Mattina, Matthew</creatorcontrib><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><title>arXiv.org</title><description>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</description><subject>Accuracy</subject><subject>Benchmarks</subject><subject>Compressing</subject><subject>Counting</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KglAQQOFLECTlOwy0FnSuf3spikAi3EvpNbRybMYb9fZF9ACtzuJ8E-Wg1oGXhogz5Yp0vu9jnGAUaUdlGd0GNiJtf4ZDngs0xLClAmrzaCsjcHpBEHk6fYL9oh1Tb6qLYdgz1bYaZaGmzfEqxv11rpbrVZFtvIHpbo2MZUeW-88qEXWSBGEcov5PvQFG5DjE</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Thakker, Urmish</creator><creator>Beu, Jesse</creator><creator>Gope, Dibakar</creator><creator>Chu, Zhou</creator><creator>Fedorov, Igor</creator><creator>Dasika, Ganesh</creator><creator>Mattina, Matthew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200131</creationdate><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><author>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22377146423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Benchmarks</topic><topic>Compressing</topic><topic>Counting</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakker, Urmish</creatorcontrib><creatorcontrib>Beu, Jesse</creatorcontrib><creatorcontrib>Gope, Dibakar</creatorcontrib><creatorcontrib>Chu, Zhou</creatorcontrib><creatorcontrib>Fedorov, Igor</creatorcontrib><creatorcontrib>Dasika, Ganesh</creatorcontrib><creatorcontrib>Mattina, Matthew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakker, Urmish</au><au>Beu, Jesse</au><au>Gope, Dibakar</au><au>Chu, Zhou</au><au>Fedorov, Igor</au><au>Dasika, Ganesh</au><au>Mattina, Matthew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</atitle><jtitle>arXiv.org</jtitle><date>2020-01-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2237714642
source Publicly Available Content (ProQuest)
subjects Accuracy
Benchmarks
Compressing
Counting
Neural networks
Recurrent neural networks
Video compression
title Compressing RNNs for IoT devices by 15-38x using Kronecker Products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Compressing%20RNNs%20for%20IoT%20devices%20by%2015-38x%20using%20Kronecker%20Products&rft.jtitle=arXiv.org&rft.au=Thakker,%20Urmish&rft.date=2020-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2237714642%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22377146423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237714642&rft_id=info:pmid/&rfr_iscdi=true