Loading…
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for re...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Thakker, Urmish Beu, Jesse Gope, Dibakar Chu, Zhou Fedorov, Igor Dasika, Ganesh Mattina, Matthew |
description | Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2237714642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237714642</sourcerecordid><originalsourceid>FETCH-proquest_journals_22377146423</originalsourceid><addsrcrecordid>eNqNys0KglAQQOFLECTlOwy0FnSuf3spikAi3EvpNbRybMYb9fZF9ACtzuJ8E-Wg1oGXhogz5Yp0vu9jnGAUaUdlGd0GNiJtf4ZDngs0xLClAmrzaCsjcHpBEHk6fYL9oh1Tb6qLYdgz1bYaZaGmzfEqxv11rpbrVZFtvIHpbo2MZUeW-88qEXWSBGEcov5PvQFG5DjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237714642</pqid></control><display><type>article</type><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><source>Publicly Available Content (ProQuest)</source><creator>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</creator><creatorcontrib>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</creatorcontrib><description>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Benchmarks ; Compressing ; Counting ; Neural networks ; Recurrent neural networks ; Video compression</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2237714642?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Thakker, Urmish</creatorcontrib><creatorcontrib>Beu, Jesse</creatorcontrib><creatorcontrib>Gope, Dibakar</creatorcontrib><creatorcontrib>Chu, Zhou</creatorcontrib><creatorcontrib>Fedorov, Igor</creatorcontrib><creatorcontrib>Dasika, Ganesh</creatorcontrib><creatorcontrib>Mattina, Matthew</creatorcontrib><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><title>arXiv.org</title><description>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</description><subject>Accuracy</subject><subject>Benchmarks</subject><subject>Compressing</subject><subject>Counting</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KglAQQOFLECTlOwy0FnSuf3spikAi3EvpNbRybMYb9fZF9ACtzuJ8E-Wg1oGXhogz5Yp0vu9jnGAUaUdlGd0GNiJtf4ZDngs0xLClAmrzaCsjcHpBEHk6fYL9oh1Tb6qLYdgz1bYaZaGmzfEqxv11rpbrVZFtvIHpbo2MZUeW-88qEXWSBGEcov5PvQFG5DjE</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Thakker, Urmish</creator><creator>Beu, Jesse</creator><creator>Gope, Dibakar</creator><creator>Chu, Zhou</creator><creator>Fedorov, Igor</creator><creator>Dasika, Ganesh</creator><creator>Mattina, Matthew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200131</creationdate><title>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</title><author>Thakker, Urmish ; Beu, Jesse ; Gope, Dibakar ; Chu, Zhou ; Fedorov, Igor ; Dasika, Ganesh ; Mattina, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22377146423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Benchmarks</topic><topic>Compressing</topic><topic>Counting</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakker, Urmish</creatorcontrib><creatorcontrib>Beu, Jesse</creatorcontrib><creatorcontrib>Gope, Dibakar</creatorcontrib><creatorcontrib>Chu, Zhou</creatorcontrib><creatorcontrib>Fedorov, Igor</creatorcontrib><creatorcontrib>Dasika, Ganesh</creatorcontrib><creatorcontrib>Mattina, Matthew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakker, Urmish</au><au>Beu, Jesse</au><au>Gope, Dibakar</au><au>Chu, Zhou</au><au>Fedorov, Igor</au><au>Dasika, Ganesh</au><au>Mattina, Matthew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Compressing RNNs for IoT devices by 15-38x using Kronecker Products</atitle><jtitle>arXiv.org</jtitle><date>2020-01-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size.As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 15-38x with minimal accuracy loss. By quantizing the resulting models to 8-bits, we further push the compression factor to 50x. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques across 5 benchmarks spanning 3 different applications, while simultaneously improving inference run-time. We show that the KP compression mechanism does introduce an accuracy loss, which can be mitigated by a proposed hybrid KP (HKP) approach. Our HKP algorithm provides fine-grained control over the compression ratio, enabling us to regain accuracy lost during compression by adding a small number of model parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2237714642 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Benchmarks Compressing Counting Neural networks Recurrent neural networks Video compression |
title | Compressing RNNs for IoT devices by 15-38x using Kronecker Products |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Compressing%20RNNs%20for%20IoT%20devices%20by%2015-38x%20using%20Kronecker%20Products&rft.jtitle=arXiv.org&rft.au=Thakker,%20Urmish&rft.date=2020-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2237714642%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22377146423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237714642&rft_id=info:pmid/&rfr_iscdi=true |