Loading…
Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association
To meet the increasing demand for safe, environmentally friendly and high-performance smart materials, self-healing rubbers are highly desired. Here, the self-healing performance of ethylene propylene diene monomer rubber (EPDM) is reported, which was designed by graft-polymerization of zinc dimetha...
Saved in:
Published in: | Chinese journal of polymer science 2019-07, Vol.37 (7), p.700-707 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To meet the increasing demand for safe, environmentally friendly and high-performance smart materials, self-healing rubbers are highly desired. Here, the self-healing performance of ethylene propylene diene monomer rubber (EPDM) is reported, which was designed by graft-polymerization of zinc dimethacrylate (ZDMA) onto rubber chains to form a reversible ionic cross-linked network. Single ionic cross-linked network and dual network, combining covalent and ionic cross-links, could be tuned by controlling vulcanization process to achieve tailorable mechanical and self-healing properties. It was found that ionic cross-linked EPDM showed a recovery of more than 95% of the original mechanical strength through a healing process of 1 h at 100 °C. The covalent cross-links could improve mechanical properties but block self-healing. Adding 50 wt% liquid rubber to “dry” EPDM could effectively enhance self-healing capability of the dual cross-linked network and the healed tensile strength could reach 0.9 MPa. A compromise between mechanical performance and healing capability could be potentially tailored by controlling vulcanization process and liquid rubber content. |
---|---|
ISSN: | 0256-7679 1439-6203 |
DOI: | 10.1007/s10118-019-2241-0 |