Loading…
Automated generation of bacterial resource allocation models
Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated w...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bulović, Ana Fischer, Stephan Dinh, Marc Golib, Felipe Liebermeister, Wolfram Poirier, Christian Tournier, Laurent Klipp, Edda Fromion, Vincent Goelzer, Anne |
description | Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain. |
doi_str_mv | 10.48550/arxiv.1906.04525 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2238851105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238851105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7ozdG1XM5JsGboJoY9AoJvsw0geFQfHaiW79PNrSFd3czjnCvEAstLWGPlE6bf_qaCVdSW1QXMjVqgUlFYj3olNzmcpJdYNGqNW4nk7T_FCE3fFJ4-caOrjWMRQOPITp56GInGOc_Jc0DBEfwUuseMh34vbQEPmzf-uxfH15bh7Lw8fb_vd9lDS0i-7RnNLXcCgwINzra89MobgQKGDxngmAgeWlXZWMgVru0BtA6iaoEmtxeNV-5Xi98x5Op2XQ-NSPCEqaw2ANOoPy2tK8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238851105</pqid></control><display><type>article</type><title>Automated generation of bacterial resource allocation models</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</creator><creatorcontrib>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</creatorcontrib><description>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.04525</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bacteria ; Computer simulation ; E coli ; Fluxes ; Molecular machines ; Resource allocation ; Workflow</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2238851105?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bulović, Ana</creatorcontrib><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Dinh, Marc</creatorcontrib><creatorcontrib>Golib, Felipe</creatorcontrib><creatorcontrib>Liebermeister, Wolfram</creatorcontrib><creatorcontrib>Poirier, Christian</creatorcontrib><creatorcontrib>Tournier, Laurent</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><creatorcontrib>Fromion, Vincent</creatorcontrib><creatorcontrib>Goelzer, Anne</creatorcontrib><title>Automated generation of bacterial resource allocation models</title><title>arXiv.org</title><description>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</description><subject>Bacteria</subject><subject>Computer simulation</subject><subject>E coli</subject><subject>Fluxes</subject><subject>Molecular machines</subject><subject>Resource allocation</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7ozdG1XM5JsGboJoY9AoJvsw0geFQfHaiW79PNrSFd3czjnCvEAstLWGPlE6bf_qaCVdSW1QXMjVqgUlFYj3olNzmcpJdYNGqNW4nk7T_FCE3fFJ4-caOrjWMRQOPITp56GInGOc_Jc0DBEfwUuseMh34vbQEPmzf-uxfH15bh7Lw8fb_vd9lDS0i-7RnNLXcCgwINzra89MobgQKGDxngmAgeWlXZWMgVru0BtA6iaoEmtxeNV-5Xi98x5Op2XQ-NSPCEqaw2ANOoPy2tK8Q</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Bulović, Ana</creator><creator>Fischer, Stephan</creator><creator>Dinh, Marc</creator><creator>Golib, Felipe</creator><creator>Liebermeister, Wolfram</creator><creator>Poirier, Christian</creator><creator>Tournier, Laurent</creator><creator>Klipp, Edda</creator><creator>Fromion, Vincent</creator><creator>Goelzer, Anne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190611</creationdate><title>Automated generation of bacterial resource allocation models</title><author>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Computer simulation</topic><topic>E coli</topic><topic>Fluxes</topic><topic>Molecular machines</topic><topic>Resource allocation</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Bulović, Ana</creatorcontrib><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Dinh, Marc</creatorcontrib><creatorcontrib>Golib, Felipe</creatorcontrib><creatorcontrib>Liebermeister, Wolfram</creatorcontrib><creatorcontrib>Poirier, Christian</creatorcontrib><creatorcontrib>Tournier, Laurent</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><creatorcontrib>Fromion, Vincent</creatorcontrib><creatorcontrib>Goelzer, Anne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulović, Ana</au><au>Fischer, Stephan</au><au>Dinh, Marc</au><au>Golib, Felipe</au><au>Liebermeister, Wolfram</au><au>Poirier, Christian</au><au>Tournier, Laurent</au><au>Klipp, Edda</au><au>Fromion, Vincent</au><au>Goelzer, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated generation of bacterial resource allocation models</atitle><jtitle>arXiv.org</jtitle><date>2019-06-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.04525</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2238851105 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Bacteria Computer simulation E coli Fluxes Molecular machines Resource allocation Workflow |
title | Automated generation of bacterial resource allocation models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20generation%20of%20bacterial%20resource%20allocation%20models&rft.jtitle=arXiv.org&rft.au=Bulovi%C4%87,%20Ana&rft.date=2019-06-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.04525&rft_dat=%3Cproquest%3E2238851105%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2238851105&rft_id=info:pmid/&rfr_iscdi=true |