Loading…

Automated generation of bacterial resource allocation models

Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-06
Main Authors: Bulović, Ana, Fischer, Stephan, Dinh, Marc, Golib, Felipe, Liebermeister, Wolfram, Poirier, Christian, Tournier, Laurent, Klipp, Edda, Fromion, Vincent, Goelzer, Anne
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bulović, Ana
Fischer, Stephan
Dinh, Marc
Golib, Felipe
Liebermeister, Wolfram
Poirier, Christian
Tournier, Laurent
Klipp, Edda
Fromion, Vincent
Goelzer, Anne
description Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.
doi_str_mv 10.48550/arxiv.1906.04525
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2238851105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238851105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7ozdG1XM5JsGboJoY9AoJvsw0geFQfHaiW79PNrSFd3czjnCvEAstLWGPlE6bf_qaCVdSW1QXMjVqgUlFYj3olNzmcpJdYNGqNW4nk7T_FCE3fFJ4-caOrjWMRQOPITp56GInGOc_Jc0DBEfwUuseMh34vbQEPmzf-uxfH15bh7Lw8fb_vd9lDS0i-7RnNLXcCgwINzra89MobgQKGDxngmAgeWlXZWMgVru0BtA6iaoEmtxeNV-5Xi98x5Op2XQ-NSPCEqaw2ANOoPy2tK8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238851105</pqid></control><display><type>article</type><title>Automated generation of bacterial resource allocation models</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</creator><creatorcontrib>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</creatorcontrib><description>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.04525</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bacteria ; Computer simulation ; E coli ; Fluxes ; Molecular machines ; Resource allocation ; Workflow</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2238851105?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Bulović, Ana</creatorcontrib><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Dinh, Marc</creatorcontrib><creatorcontrib>Golib, Felipe</creatorcontrib><creatorcontrib>Liebermeister, Wolfram</creatorcontrib><creatorcontrib>Poirier, Christian</creatorcontrib><creatorcontrib>Tournier, Laurent</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><creatorcontrib>Fromion, Vincent</creatorcontrib><creatorcontrib>Goelzer, Anne</creatorcontrib><title>Automated generation of bacterial resource allocation models</title><title>arXiv.org</title><description>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</description><subject>Bacteria</subject><subject>Computer simulation</subject><subject>E coli</subject><subject>Fluxes</subject><subject>Molecular machines</subject><subject>Resource allocation</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7ozdG1XM5JsGboJoY9AoJvsw0geFQfHaiW79PNrSFd3czjnCvEAstLWGPlE6bf_qaCVdSW1QXMjVqgUlFYj3olNzmcpJdYNGqNW4nk7T_FCE3fFJ4-caOrjWMRQOPITp56GInGOc_Jc0DBEfwUuseMh34vbQEPmzf-uxfH15bh7Lw8fb_vd9lDS0i-7RnNLXcCgwINzra89MobgQKGDxngmAgeWlXZWMgVru0BtA6iaoEmtxeNV-5Xi98x5Op2XQ-NSPCEqaw2ANOoPy2tK8Q</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Bulović, Ana</creator><creator>Fischer, Stephan</creator><creator>Dinh, Marc</creator><creator>Golib, Felipe</creator><creator>Liebermeister, Wolfram</creator><creator>Poirier, Christian</creator><creator>Tournier, Laurent</creator><creator>Klipp, Edda</creator><creator>Fromion, Vincent</creator><creator>Goelzer, Anne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190611</creationdate><title>Automated generation of bacterial resource allocation models</title><author>Bulović, Ana ; Fischer, Stephan ; Dinh, Marc ; Golib, Felipe ; Liebermeister, Wolfram ; Poirier, Christian ; Tournier, Laurent ; Klipp, Edda ; Fromion, Vincent ; Goelzer, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Computer simulation</topic><topic>E coli</topic><topic>Fluxes</topic><topic>Molecular machines</topic><topic>Resource allocation</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Bulović, Ana</creatorcontrib><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Dinh, Marc</creatorcontrib><creatorcontrib>Golib, Felipe</creatorcontrib><creatorcontrib>Liebermeister, Wolfram</creatorcontrib><creatorcontrib>Poirier, Christian</creatorcontrib><creatorcontrib>Tournier, Laurent</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><creatorcontrib>Fromion, Vincent</creatorcontrib><creatorcontrib>Goelzer, Anne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulović, Ana</au><au>Fischer, Stephan</au><au>Dinh, Marc</au><au>Golib, Felipe</au><au>Liebermeister, Wolfram</au><au>Poirier, Christian</au><au>Tournier, Laurent</au><au>Klipp, Edda</au><au>Fromion, Vincent</au><au>Goelzer, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated generation of bacterial resource allocation models</atitle><jtitle>arXiv.org</jtitle><date>2019-06-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, meta-bolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by add-ing descriptions of cellular processes relevant for growth and maintenance. The package in-cludes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results ob-tained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which ob-tained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modeling accessible for a wide range of bacterial wild-type and engineered strains, as il-lustrated with a CO2-fixing Escherichia coli strain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.04525</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2238851105
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bacteria
Computer simulation
E coli
Fluxes
Molecular machines
Resource allocation
Workflow
title Automated generation of bacterial resource allocation models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20generation%20of%20bacterial%20resource%20allocation%20models&rft.jtitle=arXiv.org&rft.au=Bulovi%C4%87,%20Ana&rft.date=2019-06-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.04525&rft_dat=%3Cproquest%3E2238851105%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-d74e9adf2f31c1bb9c6c2e2ffb132b175ceaa1b18e34b80eaf88dfa971237f4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2238851105&rft_id=info:pmid/&rfr_iscdi=true