Loading…
Nonreciprocal Magnons in Noncentrosymmetric Magnets
In a noncentrosymmetric crystalline material, the propagation of particles or quasiparticles can be nonreciprocal, i.e., the left-moving and right-moving (quasi)particles become inequivalent. In a noncentrosymmetric magnet, such nonreciprocity is expected for magnons, the quantized collective spin f...
Saved in:
Published in: | Journal of the Physical Society of Japan 2019-08, Vol.88 (8), p.81007 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a noncentrosymmetric crystalline material, the propagation of particles or quasiparticles can be nonreciprocal, i.e., the left-moving and right-moving (quasi)particles become inequivalent. In a noncentrosymmetric magnet, such nonreciprocity is expected for magnons, the quantized collective spin fluctuations that propagate as a wave in a magnetically ordered phase. Even though the nonreciprocal propagation of the magnons was theoretically proposed decades ago, experimentally, little attention has been given to the phenomenon, partly because of its putative subtleness originating from the weak relativistic spin–orbit coupling. The situation has markedly changed recently, as the possibility of measuring and controlling a magnon spin current in noncentrosymmetric magnets begins to gain wider recognition. In this article, we will review recent progress in the detection of the nonreciprocal magnons in noncentrosymmetric magnets. Particular emphasis will be placed on the neutron scattering studies where the magnon dispersion is directly measured in a microscopic length scale. |
---|---|
ISSN: | 0031-9015 1347-4073 |
DOI: | 10.7566/JPSJ.88.081007 |