Loading…

Long-time existence for multi-dimensional periodic water waves

We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension pa...

Full description

Saved in:
Bibliographic Details
Published in:Geometric and functional analysis 2019-06, Vol.29 (3), p.811-870
Main Authors: Ionescu, A. D., Pusateri, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633
cites cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633
container_end_page 870
container_issue 3
container_start_page 811
container_title Geometric and functional analysis
container_volume 29
creator Ionescu, A. D.
Pusateri, F.
description We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.
doi_str_mv 10.1007/s00039-019-00490-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239742740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239742740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoDngY8RzuPeeQiyOILFrwoeAvZmc6SZWYyJjM-_t6sI3jz0F0FXVU0Rcg5g0sGUF5FABCKAksDUgGtDsiCSZ6IKuEwcWAFlVK8HpOTGHdJnucyX5Drte-3dHQdZvjp4oh9jZn1IeumdnS0SYc-Ot-bNhswON-4OvswI4a03zGekiNr2ohnv7gkL3e3z6sHun66f1zdrGktmBppwVTFLVqxEWiUVIWBUpQNU1ICR2FzCUZsVM1znjfS8D0q4I3BplC2EGJJLubcIfi3CeOod34K6auoOReqlLyUkFR8VtXBxxjQ6iG4zoQvzUDve9JzTzr1pH960lUyidkUk7jfYviL_sf1Dctwae8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239742740</pqid></control><display><type>article</type><title>Long-time existence for multi-dimensional periodic water waves</title><source>Springer Nature</source><creator>Ionescu, A. D. ; Pusateri, F.</creator><creatorcontrib>Ionescu, A. D. ; Pusateri, F.</creatorcontrib><description>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-019-00490-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Canonical forms ; Capillary waves ; Gravitation ; Hyperspaces ; Life span ; Lower bounds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Surface tension ; Toruses ; Water waves</subject><ispartof>Geometric and functional analysis, 2019-06, Vol.29 (3), p.811-870</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</citedby><cites>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><title>Long-time existence for multi-dimensional periodic water waves</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</description><subject>Analysis</subject><subject>Canonical forms</subject><subject>Capillary waves</subject><subject>Gravitation</subject><subject>Hyperspaces</subject><subject>Life span</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Surface tension</subject><subject>Toruses</subject><subject>Water waves</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoDngY8RzuPeeQiyOILFrwoeAvZmc6SZWYyJjM-_t6sI3jz0F0FXVU0Rcg5g0sGUF5FABCKAksDUgGtDsiCSZ6IKuEwcWAFlVK8HpOTGHdJnucyX5Drte-3dHQdZvjp4oh9jZn1IeumdnS0SYc-Ot-bNhswON-4OvswI4a03zGekiNr2ohnv7gkL3e3z6sHun66f1zdrGktmBppwVTFLVqxEWiUVIWBUpQNU1ICR2FzCUZsVM1znjfS8D0q4I3BplC2EGJJLubcIfi3CeOod34K6auoOReqlLyUkFR8VtXBxxjQ6iG4zoQvzUDve9JzTzr1pH960lUyidkUk7jfYviL_sf1Dctwae8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ionescu, A. D.</creator><creator>Pusateri, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Long-time existence for multi-dimensional periodic water waves</title><author>Ionescu, A. D. ; Pusateri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Canonical forms</topic><topic>Capillary waves</topic><topic>Gravitation</topic><topic>Hyperspaces</topic><topic>Life span</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Surface tension</topic><topic>Toruses</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionescu, A. D.</au><au>Pusateri, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-time existence for multi-dimensional periodic water waves</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>811</spage><epage>870</epage><pages>811-870</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-019-00490-8</doi><tpages>60</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2019-06, Vol.29 (3), p.811-870
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2239742740
source Springer Nature
subjects Analysis
Canonical forms
Capillary waves
Gravitation
Hyperspaces
Life span
Lower bounds
Mathematical analysis
Mathematics
Mathematics and Statistics
Surface tension
Toruses
Water waves
title Long-time existence for multi-dimensional periodic water waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-time%20existence%20for%20multi-dimensional%20periodic%20water%20waves&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Ionescu,%20A.%20D.&rft.date=2019-06-01&rft.volume=29&rft.issue=3&rft.spage=811&rft.epage=870&rft.pages=811-870&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-019-00490-8&rft_dat=%3Cproquest_cross%3E2239742740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239742740&rft_id=info:pmid/&rfr_iscdi=true