Loading…
Long-time existence for multi-dimensional periodic water waves
We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size ε , smooth solutions exist up to times of the order of ε - 5 / 3 + , for almost all values of the gravity and surface tension pa...
Saved in:
Published in: | Geometric and functional analysis 2019-06, Vol.29 (3), p.811-870 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633 |
container_end_page | 870 |
container_issue | 3 |
container_start_page | 811 |
container_title | Geometric and functional analysis |
container_volume | 29 |
creator | Ionescu, A. D. Pusateri, F. |
description | We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size
ε
, smooth solutions exist up to times of the order of
ε
-
5
/
3
+
, for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus. |
doi_str_mv | 10.1007/s00039-019-00490-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239742740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239742740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoDngY8RzuPeeQiyOILFrwoeAvZmc6SZWYyJjM-_t6sI3jz0F0FXVU0Rcg5g0sGUF5FABCKAksDUgGtDsiCSZ6IKuEwcWAFlVK8HpOTGHdJnucyX5Drte-3dHQdZvjp4oh9jZn1IeumdnS0SYc-Ot-bNhswON-4OvswI4a03zGekiNr2ohnv7gkL3e3z6sHun66f1zdrGktmBppwVTFLVqxEWiUVIWBUpQNU1ICR2FzCUZsVM1znjfS8D0q4I3BplC2EGJJLubcIfi3CeOod34K6auoOReqlLyUkFR8VtXBxxjQ6iG4zoQvzUDve9JzTzr1pH960lUyidkUk7jfYviL_sf1Dctwae8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239742740</pqid></control><display><type>article</type><title>Long-time existence for multi-dimensional periodic water waves</title><source>Springer Nature</source><creator>Ionescu, A. D. ; Pusateri, F.</creator><creatorcontrib>Ionescu, A. D. ; Pusateri, F.</creatorcontrib><description>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size
ε
, smooth solutions exist up to times of the order of
ε
-
5
/
3
+
, for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-019-00490-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Canonical forms ; Capillary waves ; Gravitation ; Hyperspaces ; Life span ; Lower bounds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Surface tension ; Toruses ; Water waves</subject><ispartof>Geometric and functional analysis, 2019-06, Vol.29 (3), p.811-870</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</citedby><cites>FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><title>Long-time existence for multi-dimensional periodic water waves</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size
ε
, smooth solutions exist up to times of the order of
ε
-
5
/
3
+
, for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</description><subject>Analysis</subject><subject>Canonical forms</subject><subject>Capillary waves</subject><subject>Gravitation</subject><subject>Hyperspaces</subject><subject>Life span</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Surface tension</subject><subject>Toruses</subject><subject>Water waves</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoDngY8RzuPeeQiyOILFrwoeAvZmc6SZWYyJjM-_t6sI3jz0F0FXVU0Rcg5g0sGUF5FABCKAksDUgGtDsiCSZ6IKuEwcWAFlVK8HpOTGHdJnucyX5Drte-3dHQdZvjp4oh9jZn1IeumdnS0SYc-Ot-bNhswON-4OvswI4a03zGekiNr2ohnv7gkL3e3z6sHun66f1zdrGktmBppwVTFLVqxEWiUVIWBUpQNU1ICR2FzCUZsVM1znjfS8D0q4I3BplC2EGJJLubcIfi3CeOod34K6auoOReqlLyUkFR8VtXBxxjQ6iG4zoQvzUDve9JzTzr1pH960lUyidkUk7jfYviL_sf1Dctwae8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ionescu, A. D.</creator><creator>Pusateri, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Long-time existence for multi-dimensional periodic water waves</title><author>Ionescu, A. D. ; Pusateri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Canonical forms</topic><topic>Capillary waves</topic><topic>Gravitation</topic><topic>Hyperspaces</topic><topic>Life span</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Surface tension</topic><topic>Toruses</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionescu, A. D.</au><au>Pusateri, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-time existence for multi-dimensional periodic water waves</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>811</spage><epage>870</epage><pages>811-870</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size
ε
, smooth solutions exist up to times of the order of
ε
-
5
/
3
+
, for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-019-00490-8</doi><tpages>60</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1016-443X |
ispartof | Geometric and functional analysis, 2019-06, Vol.29 (3), p.811-870 |
issn | 1016-443X 1420-8970 |
language | eng |
recordid | cdi_proquest_journals_2239742740 |
source | Springer Nature |
subjects | Analysis Canonical forms Capillary waves Gravitation Hyperspaces Life span Lower bounds Mathematical analysis Mathematics Mathematics and Statistics Surface tension Toruses Water waves |
title | Long-time existence for multi-dimensional periodic water waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-time%20existence%20for%20multi-dimensional%20periodic%20water%20waves&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Ionescu,%20A.%20D.&rft.date=2019-06-01&rft.volume=29&rft.issue=3&rft.spage=811&rft.epage=870&rft.pages=811-870&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-019-00490-8&rft_dat=%3Cproquest_cross%3E2239742740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-61982fef3b3ea9496a0737d194402e3f540a3b9c2525d4a22525902daed69f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239742740&rft_id=info:pmid/&rfr_iscdi=true |