Loading…
Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions
We consider the lattice of subalgebras of a semifield U ( X ) of positive continuous functions on an arbitrary topological space X and its sublattice of subalgebras with unity. We prove that each isomorphism of the lattices of subalgebras with unity of semifields U ( X ) and U ( Y ) is induced by a...
Saved in:
Published in: | Siberian mathematical journal 2019-05, Vol.60 (3), p.526-541 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043 |
container_end_page | 541 |
container_issue | 3 |
container_start_page | 526 |
container_title | Siberian mathematical journal |
container_volume | 60 |
creator | Sidorov, V. V. |
description | We consider the lattice of subalgebras of a semifield
U
(
X
) of positive continuous functions on an arbitrary topological space
X
and its sublattice of subalgebras with unity. We prove that each isomorphism of the lattices of subalgebras with unity of semifields
U
(
X
) and
U
(
Y
) is induced by a unique isomorphism of the semifields. The same result holds for lattices of all subalgebras excluding the case of the double-point Tychonoff extension of spaces. |
doi_str_mv | 10.1134/S0037446619030157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239743071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239743071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwueV2eSbNI9SrG2UFCoel2SNFtTupuaZAX_vduu4EG8zMzjfcwwhFwj3CIyfrcCYJJzIbAEBljIEzLqK8tLKuCUjA50fuDPyUWMWwAEEOWIvC2ib3zYv7vYxMzX2VKl5Iw9zqtOq93G6qAGaBtXO7tbH9Gzjy65T5tNfZtc2_kuZrOuNcn5Nl6Ss1rtor366WPyOnt4mc7z5dPjYnq_zA1DkXLUyLTSSvKSScao5MoUIAqtlcV1f6LUa8WFrZXRBRYTbZCWWGJBYSIscDYmN0PuPviPzsZUbX0X2n5lRSkrJWcgsVfhoDLBxxhsXe2Da1T4qhCqw_uqP-_rPXTwxF7bbmz4Tf7f9A32HnE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239743071</pqid></control><display><type>article</type><title>Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions</title><source>Springer Nature</source><creator>Sidorov, V. V.</creator><creatorcontrib>Sidorov, V. V.</creatorcontrib><description>We consider the lattice of subalgebras of a semifield
U
(
X
) of positive continuous functions on an arbitrary topological space
X
and its sublattice of subalgebras with unity. We prove that each isomorphism of the lattices of subalgebras with unity of semifields
U
(
X
) and
U
(
Y
) is induced by a unique isomorphism of the semifields. The same result holds for lattices of all subalgebras excluding the case of the double-point Tychonoff extension of spaces.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446619030157</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Continuity (mathematics) ; Isomorphism ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Unity</subject><ispartof>Siberian mathematical journal, 2019-05, Vol.60 (3), p.526-541</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043</citedby><cites>FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sidorov, V. V.</creatorcontrib><title>Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We consider the lattice of subalgebras of a semifield
U
(
X
) of positive continuous functions on an arbitrary topological space
X
and its sublattice of subalgebras with unity. We prove that each isomorphism of the lattices of subalgebras with unity of semifields
U
(
X
) and
U
(
Y
) is induced by a unique isomorphism of the semifields. The same result holds for lattices of all subalgebras excluding the case of the double-point Tychonoff extension of spaces.</description><subject>Continuity (mathematics)</subject><subject>Isomorphism</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Unity</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwueV2eSbNI9SrG2UFCoel2SNFtTupuaZAX_vduu4EG8zMzjfcwwhFwj3CIyfrcCYJJzIbAEBljIEzLqK8tLKuCUjA50fuDPyUWMWwAEEOWIvC2ib3zYv7vYxMzX2VKl5Iw9zqtOq93G6qAGaBtXO7tbH9Gzjy65T5tNfZtc2_kuZrOuNcn5Nl6Ss1rtor366WPyOnt4mc7z5dPjYnq_zA1DkXLUyLTSSvKSScao5MoUIAqtlcV1f6LUa8WFrZXRBRYTbZCWWGJBYSIscDYmN0PuPviPzsZUbX0X2n5lRSkrJWcgsVfhoDLBxxhsXe2Da1T4qhCqw_uqP-_rPXTwxF7bbmz4Tf7f9A32HnE7</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sidorov, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions</title><author>Sidorov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Continuity (mathematics)</topic><topic>Isomorphism</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidorov, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidorov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>60</volume><issue>3</issue><spage>526</spage><epage>541</epage><pages>526-541</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We consider the lattice of subalgebras of a semifield
U
(
X
) of positive continuous functions on an arbitrary topological space
X
and its sublattice of subalgebras with unity. We prove that each isomorphism of the lattices of subalgebras with unity of semifields
U
(
X
) and
U
(
Y
) is induced by a unique isomorphism of the semifields. The same result holds for lattices of all subalgebras excluding the case of the double-point Tychonoff extension of spaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446619030157</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2019-05, Vol.60 (3), p.526-541 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2239743071 |
source | Springer Nature |
subjects | Continuity (mathematics) Isomorphism Lattices (mathematics) Mathematics Mathematics and Statistics Unity |
title | Isomorphisms of Lattices of Subalgebras of Semifields of Positive Continuous Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomorphisms%20of%20Lattices%20of%20Subalgebras%20of%20Semifields%20of%20Positive%20Continuous%20Functions&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Sidorov,%20V.%20V.&rft.date=2019-05-01&rft.volume=60&rft.issue=3&rft.spage=526&rft.epage=541&rft.pages=526-541&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446619030157&rft_dat=%3Cproquest_cross%3E2239743071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1b13baba7493733274ac5065bbae1d1007bda46efacb5158bc12919152086e043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239743071&rft_id=info:pmid/&rfr_iscdi=true |