Loading…

The Orbital Lense-Thirring Precession in a Strong Field

We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum's hodograph is always close to a circle. This applies to both bounded and unbounded orb...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-06
Main Authors: Strokov, Vladimir N, Khlghatyan, Shant
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Strokov, Vladimir N
Khlghatyan, Shant
description We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum's hodograph is always close to a circle. This applies to both bounded and unbounded orbits that do not end up in the black hole. Deviations from the circular shape do not exceed \(\approx10\%\) and \(\approx7\%\) for bounded and unbounded orbits, respectively. We also find that nutation provides an accurate approximation for those deviations, which fits the exact curve within \(\sim 0.01\%\) for the orbits of maximal deviation. Remarkably, the more the deviation, the better the nutation approximates it. Thus, we demonstrate that the orbital Lense-Thirring precession, originally obtained in the weak-field limit, is also a valid description in the general case of (almost) arbitrary exact orbits. As a by-product, we also derive the parameters of unstable spherical timelike orbits as a function of their radii and arbitrary rotation parameter \(a\) and Carter's constant \(Q\). We verify our results numerically for all the kinds of orbits studied.
doi_str_mv 10.48550/arxiv.1906.05309
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2239953438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239953438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-f83846946d47a97a9e89ad7466c1a0b70f6d26c7e56b7e2377f0c114474c30aa3</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgdBsNQ-gLuBrhPvzJ3fpRSrQqCC2ZdJctNOCYnOpOLjG1D44MBZnI-xBwGlclrDY0g_8bsUHkwJGsHfsJVEFIVTUt6xTc4XAJDGSq1xxWx9Jn5ITZzDwCsaMxX1OaYUxxN_T9RSznEaeRx54B9zmha9jzR09-y2D0OmzT_XrN4_17vXojq8vO2eqiJo6YreoVPGK9MpG_wycj50VhnTigCNhd500rSWtGksSbS2h1YIpaxqEULANdv-ZT_T9HWlPB8v0zWNy-NRSvReo0KHv7NJRg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239953438</pqid></control><display><type>article</type><title>The Orbital Lense-Thirring Precession in a Strong Field</title><source>Publicly Available Content Database</source><creator>Strokov, Vladimir N ; Khlghatyan, Shant</creator><creatorcontrib>Strokov, Vladimir N ; Khlghatyan, Shant</creatorcontrib><description>We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum's hodograph is always close to a circle. This applies to both bounded and unbounded orbits that do not end up in the black hole. Deviations from the circular shape do not exceed \(\approx10\%\) and \(\approx7\%\) for bounded and unbounded orbits, respectively. We also find that nutation provides an accurate approximation for those deviations, which fits the exact curve within \(\sim 0.01\%\) for the orbits of maximal deviation. Remarkably, the more the deviation, the better the nutation approximates it. Thus, we demonstrate that the orbital Lense-Thirring precession, originally obtained in the weak-field limit, is also a valid description in the general case of (almost) arbitrary exact orbits. As a by-product, we also derive the parameters of unstable spherical timelike orbits as a function of their radii and arbitrary rotation parameter \(a\) and Carter's constant \(Q\). We verify our results numerically for all the kinds of orbits studied.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.05309</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angular momentum ; Deviation ; Gravitational fields ; Hodographs ; Nutation ; Orbits ; Parameters ; Precession</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2239953438?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Strokov, Vladimir N</creatorcontrib><creatorcontrib>Khlghatyan, Shant</creatorcontrib><title>The Orbital Lense-Thirring Precession in a Strong Field</title><title>arXiv.org</title><description>We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum's hodograph is always close to a circle. This applies to both bounded and unbounded orbits that do not end up in the black hole. Deviations from the circular shape do not exceed \(\approx10\%\) and \(\approx7\%\) for bounded and unbounded orbits, respectively. We also find that nutation provides an accurate approximation for those deviations, which fits the exact curve within \(\sim 0.01\%\) for the orbits of maximal deviation. Remarkably, the more the deviation, the better the nutation approximates it. Thus, we demonstrate that the orbital Lense-Thirring precession, originally obtained in the weak-field limit, is also a valid description in the general case of (almost) arbitrary exact orbits. As a by-product, we also derive the parameters of unstable spherical timelike orbits as a function of their radii and arbitrary rotation parameter \(a\) and Carter's constant \(Q\). We verify our results numerically for all the kinds of orbits studied.</description><subject>Angular momentum</subject><subject>Deviation</subject><subject>Gravitational fields</subject><subject>Hodographs</subject><subject>Nutation</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Precession</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AURgdBsNQ-gLuBrhPvzJ3fpRSrQqCC2ZdJctNOCYnOpOLjG1D44MBZnI-xBwGlclrDY0g_8bsUHkwJGsHfsJVEFIVTUt6xTc4XAJDGSq1xxWx9Jn5ITZzDwCsaMxX1OaYUxxN_T9RSznEaeRx54B9zmha9jzR09-y2D0OmzT_XrN4_17vXojq8vO2eqiJo6YreoVPGK9MpG_wycj50VhnTigCNhd500rSWtGksSbS2h1YIpaxqEULANdv-ZT_T9HWlPB8v0zWNy-NRSvReo0KHv7NJRg0</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Strokov, Vladimir N</creator><creator>Khlghatyan, Shant</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190612</creationdate><title>The Orbital Lense-Thirring Precession in a Strong Field</title><author>Strokov, Vladimir N ; Khlghatyan, Shant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-f83846946d47a97a9e89ad7466c1a0b70f6d26c7e56b7e2377f0c114474c30aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>Deviation</topic><topic>Gravitational fields</topic><topic>Hodographs</topic><topic>Nutation</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Precession</topic><toplevel>online_resources</toplevel><creatorcontrib>Strokov, Vladimir N</creatorcontrib><creatorcontrib>Khlghatyan, Shant</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strokov, Vladimir N</au><au>Khlghatyan, Shant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Orbital Lense-Thirring Precession in a Strong Field</atitle><jtitle>arXiv.org</jtitle><date>2019-06-12</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum's hodograph is always close to a circle. This applies to both bounded and unbounded orbits that do not end up in the black hole. Deviations from the circular shape do not exceed \(\approx10\%\) and \(\approx7\%\) for bounded and unbounded orbits, respectively. We also find that nutation provides an accurate approximation for those deviations, which fits the exact curve within \(\sim 0.01\%\) for the orbits of maximal deviation. Remarkably, the more the deviation, the better the nutation approximates it. Thus, we demonstrate that the orbital Lense-Thirring precession, originally obtained in the weak-field limit, is also a valid description in the general case of (almost) arbitrary exact orbits. As a by-product, we also derive the parameters of unstable spherical timelike orbits as a function of their radii and arbitrary rotation parameter \(a\) and Carter's constant \(Q\). We verify our results numerically for all the kinds of orbits studied.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.05309</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2239953438
source Publicly Available Content Database
subjects Angular momentum
Deviation
Gravitational fields
Hodographs
Nutation
Orbits
Parameters
Precession
title The Orbital Lense-Thirring Precession in a Strong Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Orbital%20Lense-Thirring%20Precession%20in%20a%20Strong%20Field&rft.jtitle=arXiv.org&rft.au=Strokov,%20Vladimir%20N&rft.date=2019-06-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.05309&rft_dat=%3Cproquest%3E2239953438%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-f83846946d47a97a9e89ad7466c1a0b70f6d26c7e56b7e2377f0c114474c30aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239953438&rft_id=info:pmid/&rfr_iscdi=true