Loading…
Hilbert-space fragmentation, multifractality, and many-body localization
Investigating many-body localization (MBL) using exact numerical methods is limited by the exponentialgrowth of the Hilbert space. However, localized eigenstates display multifractality and only extend over a vanishing fraction of the Hilbert space. Here, building on this remarkable property, we dev...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pietracaprina, Francesca Laflorencie, Nicolas |
description | Investigating many-body localization (MBL) using exact numerical methods is limited by the exponentialgrowth of the Hilbert space. However, localized eigenstates display multifractality and only extend over a vanishing fraction of the Hilbert space. Here, building on this remarkable property, we develop a simple yet efficient decimation scheme to discard the irrelevant parts of the Hilbert space of the random-field Heisenberg chain. This leads to an Hilbert space fragmentation in small clusters, allowing to access larger systems at strong disorder. The MBL transition is quantitatively predicted, together with a geometrical interpretation of MBL multifractality as a shattering of the Hilbert space. |
doi_str_mv | 10.48550/arxiv.1906.05709 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2239956383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239956383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-92a244a0418fa91cb939ed199c0d1d79bd8fef5d7dfa5e9ca3ba3e0742bd90a63</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdBsNT-AHcBt504M3cmyV1KUSsU3HRf7rwkJY-aTMT46w3q6sDh8H2M3UmR68oY8UDDV_2ZSxRFLkwp8IqtFIDklVbqhm3G8SyEUEWpjIEV2-_rxoYh8fFCLmRxoPc2dIlS3XfbrJ2aVC_OJWrqNG8z6nzWUjdz2_s5a3q3-O_f-JZdR2rGsPnnmh2fn467PT-8vbzuHg-cjAKOipTWJLSsIqF0FgGDl4hOeOlLtL6KIRpf-kgmoCOwBEGUWlmPggpYs_u_2cvQf0xhTKdzPw3d8nhSChBNARXAD9ckTzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239956383</pqid></control><display><type>article</type><title>Hilbert-space fragmentation, multifractality, and many-body localization</title><source>Publicly Available Content Database</source><creator>Pietracaprina, Francesca ; Laflorencie, Nicolas</creator><creatorcontrib>Pietracaprina, Francesca ; Laflorencie, Nicolas</creatorcontrib><description>Investigating many-body localization (MBL) using exact numerical methods is limited by the exponentialgrowth of the Hilbert space. However, localized eigenstates display multifractality and only extend over a vanishing fraction of the Hilbert space. Here, building on this remarkable property, we develop a simple yet efficient decimation scheme to discard the irrelevant parts of the Hilbert space of the random-field Heisenberg chain. This leads to an Hilbert space fragmentation in small clusters, allowing to access larger systems at strong disorder. The MBL transition is quantitatively predicted, together with a geometrical interpretation of MBL multifractality as a shattering of the Hilbert space.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.05709</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvectors ; Fragmentation ; Hilbert space ; Localization ; Many body interactions ; Numerical methods</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2239956383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Pietracaprina, Francesca</creatorcontrib><creatorcontrib>Laflorencie, Nicolas</creatorcontrib><title>Hilbert-space fragmentation, multifractality, and many-body localization</title><title>arXiv.org</title><description>Investigating many-body localization (MBL) using exact numerical methods is limited by the exponentialgrowth of the Hilbert space. However, localized eigenstates display multifractality and only extend over a vanishing fraction of the Hilbert space. Here, building on this remarkable property, we develop a simple yet efficient decimation scheme to discard the irrelevant parts of the Hilbert space of the random-field Heisenberg chain. This leads to an Hilbert space fragmentation in small clusters, allowing to access larger systems at strong disorder. The MBL transition is quantitatively predicted, together with a geometrical interpretation of MBL multifractality as a shattering of the Hilbert space.</description><subject>Eigenvectors</subject><subject>Fragmentation</subject><subject>Hilbert space</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Numerical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AURgdBsNT-AHcBt504M3cmyV1KUSsU3HRf7rwkJY-aTMT46w3q6sDh8H2M3UmR68oY8UDDV_2ZSxRFLkwp8IqtFIDklVbqhm3G8SyEUEWpjIEV2-_rxoYh8fFCLmRxoPc2dIlS3XfbrJ2aVC_OJWrqNG8z6nzWUjdz2_s5a3q3-O_f-JZdR2rGsPnnmh2fn467PT-8vbzuHg-cjAKOipTWJLSsIqF0FgGDl4hOeOlLtL6KIRpf-kgmoCOwBEGUWlmPggpYs_u_2cvQf0xhTKdzPw3d8nhSChBNARXAD9ckTzY</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Pietracaprina, Francesca</creator><creator>Laflorencie, Nicolas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210419</creationdate><title>Hilbert-space fragmentation, multifractality, and many-body localization</title><author>Pietracaprina, Francesca ; Laflorencie, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-92a244a0418fa91cb939ed199c0d1d79bd8fef5d7dfa5e9ca3ba3e0742bd90a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Eigenvectors</topic><topic>Fragmentation</topic><topic>Hilbert space</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Numerical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Pietracaprina, Francesca</creatorcontrib><creatorcontrib>Laflorencie, Nicolas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietracaprina, Francesca</au><au>Laflorencie, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hilbert-space fragmentation, multifractality, and many-body localization</atitle><jtitle>arXiv.org</jtitle><date>2021-04-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Investigating many-body localization (MBL) using exact numerical methods is limited by the exponentialgrowth of the Hilbert space. However, localized eigenstates display multifractality and only extend over a vanishing fraction of the Hilbert space. Here, building on this remarkable property, we develop a simple yet efficient decimation scheme to discard the irrelevant parts of the Hilbert space of the random-field Heisenberg chain. This leads to an Hilbert space fragmentation in small clusters, allowing to access larger systems at strong disorder. The MBL transition is quantitatively predicted, together with a geometrical interpretation of MBL multifractality as a shattering of the Hilbert space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.05709</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2239956383 |
source | Publicly Available Content Database |
subjects | Eigenvectors Fragmentation Hilbert space Localization Many body interactions Numerical methods |
title | Hilbert-space fragmentation, multifractality, and many-body localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hilbert-space%20fragmentation,%20multifractality,%20and%20many-body%20localization&rft.jtitle=arXiv.org&rft.au=Pietracaprina,%20Francesca&rft.date=2021-04-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.05709&rft_dat=%3Cproquest%3E2239956383%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-92a244a0418fa91cb939ed199c0d1d79bd8fef5d7dfa5e9ca3ba3e0742bd90a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239956383&rft_id=info:pmid/&rfr_iscdi=true |