Loading…
Transport of a reactive solute in a pulsatile non-Newtonian liquid flowing through an annular pipe
The impact of heterogeneous (kinetic reversible phase exchange and irreversible absorption) chemical reactions along with a homogeneous first-order reaction is considered for the dispersion of a solute in a solvent flowing through an annular pipe under a periodic pressure gradient. A Casson model is...
Saved in:
Published in: | Journal of engineering mathematics 2019-06, Vol.116 (1), p.1-22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of heterogeneous (kinetic reversible phase exchange and irreversible absorption) chemical reactions along with a homogeneous first-order reaction is considered for the dispersion of a solute in a solvent flowing through an annular pipe under a periodic pressure gradient. A Casson model is used to describe the non-Newtonian viscosity of the liquid. The Aris–Barton method of moments is employed to study the behavior of the dispersion coefficient. The axial distribution of the mean concentration is determined using the Hermite polynomial representation of central moments. This study focuses on the transport phenomena in terms of the dispersion coefficient due to multiple kinds of reaction, yield stress, radius ratio, etc., which could be useful for analysis of flow of physiological blood-like liquids. |
---|---|
ISSN: | 0022-0833 1573-2703 |
DOI: | 10.1007/s10665-019-09999-1 |