Loading…

Using Trusted Execution Environments for Secure Stream Processing of Medical Data

Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-06
Main Authors: Segarra, Carlos, Delgado-Gonzalo, Ricard, Lemay, Mathieu, Pierre-Louis Aublin, Pietzuch, Peter, Schiavoni, Valerio
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Segarra, Carlos
Delgado-Gonzalo, Ricard
Lemay, Mathieu
Pierre-Louis Aublin
Pietzuch, Peter
Schiavoni, Valerio
description Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.
doi_str_mv 10.48550/arxiv.1906.07072
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2242593908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242593908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMgOOZ-gG8Bn1uTmya5fZRZdTBRWX0eaXorHVujSTv28x3q0_dwOOdj7EaKvECtxZ2Lp_6Yy1KYXFhh4YLNQCmZYQFwxRYp7YQQYCxorWbs_SP1wyev45RGanl1Ij-NfRh4NRz7GIYDDWPiXYh8cyaR-GaM5A78LQZP6dcNHX-htvduzx_c6K7ZZef2iRb_O2f1Y1Uvn7P169Nqeb_OnAbMDBSFFBoNNAV1BCAtoGyUctJ0jTfSewTR6pYkgqHOImlEFBZb3xhq1Jzd_mW_YvieKI3bXZjicH7cAhSgS1UKVD9CsVB3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242593908</pqid></control><display><type>article</type><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><source>Publicly Available Content Database</source><creator>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</creator><creatorcontrib>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</creatorcontrib><description>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.07072</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data processing ; Encryption ; Sensors ; Viability</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2242593908?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Segarra, Carlos</creatorcontrib><creatorcontrib>Delgado-Gonzalo, Ricard</creatorcontrib><creatorcontrib>Lemay, Mathieu</creatorcontrib><creatorcontrib>Pierre-Louis Aublin</creatorcontrib><creatorcontrib>Pietzuch, Peter</creatorcontrib><creatorcontrib>Schiavoni, Valerio</creatorcontrib><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><title>arXiv.org</title><description>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</description><subject>Data processing</subject><subject>Encryption</subject><subject>Sensors</subject><subject>Viability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAURoMgOOZ-gG8Bn1uTmya5fZRZdTBRWX0eaXorHVujSTv28x3q0_dwOOdj7EaKvECtxZ2Lp_6Yy1KYXFhh4YLNQCmZYQFwxRYp7YQQYCxorWbs_SP1wyev45RGanl1Ij-NfRh4NRz7GIYDDWPiXYh8cyaR-GaM5A78LQZP6dcNHX-htvduzx_c6K7ZZef2iRb_O2f1Y1Uvn7P169Nqeb_OnAbMDBSFFBoNNAV1BCAtoGyUctJ0jTfSewTR6pYkgqHOImlEFBZb3xhq1Jzd_mW_YvieKI3bXZjicH7cAhSgS1UKVD9CsVB3</recordid><startdate>20190617</startdate><enddate>20190617</enddate><creator>Segarra, Carlos</creator><creator>Delgado-Gonzalo, Ricard</creator><creator>Lemay, Mathieu</creator><creator>Pierre-Louis Aublin</creator><creator>Pietzuch, Peter</creator><creator>Schiavoni, Valerio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190617</creationdate><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><author>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data processing</topic><topic>Encryption</topic><topic>Sensors</topic><topic>Viability</topic><toplevel>online_resources</toplevel><creatorcontrib>Segarra, Carlos</creatorcontrib><creatorcontrib>Delgado-Gonzalo, Ricard</creatorcontrib><creatorcontrib>Lemay, Mathieu</creatorcontrib><creatorcontrib>Pierre-Louis Aublin</creatorcontrib><creatorcontrib>Pietzuch, Peter</creatorcontrib><creatorcontrib>Schiavoni, Valerio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segarra, Carlos</au><au>Delgado-Gonzalo, Ricard</au><au>Lemay, Mathieu</au><au>Pierre-Louis Aublin</au><au>Pietzuch, Peter</au><au>Schiavoni, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</atitle><jtitle>arXiv.org</jtitle><date>2019-06-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.07072</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2242593908
source Publicly Available Content Database
subjects Data processing
Encryption
Sensors
Viability
title Using Trusted Execution Environments for Secure Stream Processing of Medical Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Trusted%20Execution%20Environments%20for%20Secure%20Stream%20Processing%20of%20Medical%20Data&rft.jtitle=arXiv.org&rft.au=Segarra,%20Carlos&rft.date=2019-06-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.07072&rft_dat=%3Cproquest%3E2242593908%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242593908&rft_id=info:pmid/&rfr_iscdi=true