Loading…
Using Trusted Execution Environments for Secure Stream Processing of Medical Data
Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount o...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Segarra, Carlos Delgado-Gonzalo, Ricard Lemay, Mathieu Pierre-Louis Aublin Pietzuch, Peter Schiavoni, Valerio |
description | Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models. |
doi_str_mv | 10.48550/arxiv.1906.07072 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2242593908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242593908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMgOOZ-gG8Bn1uTmya5fZRZdTBRWX0eaXorHVujSTv28x3q0_dwOOdj7EaKvECtxZ2Lp_6Yy1KYXFhh4YLNQCmZYQFwxRYp7YQQYCxorWbs_SP1wyev45RGanl1Ij-NfRh4NRz7GIYDDWPiXYh8cyaR-GaM5A78LQZP6dcNHX-htvduzx_c6K7ZZef2iRb_O2f1Y1Uvn7P169Nqeb_OnAbMDBSFFBoNNAV1BCAtoGyUctJ0jTfSewTR6pYkgqHOImlEFBZb3xhq1Jzd_mW_YvieKI3bXZjicH7cAhSgS1UKVD9CsVB3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242593908</pqid></control><display><type>article</type><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><source>Publicly Available Content Database</source><creator>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</creator><creatorcontrib>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</creatorcontrib><description>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.07072</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data processing ; Encryption ; Sensors ; Viability</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2242593908?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Segarra, Carlos</creatorcontrib><creatorcontrib>Delgado-Gonzalo, Ricard</creatorcontrib><creatorcontrib>Lemay, Mathieu</creatorcontrib><creatorcontrib>Pierre-Louis Aublin</creatorcontrib><creatorcontrib>Pietzuch, Peter</creatorcontrib><creatorcontrib>Schiavoni, Valerio</creatorcontrib><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><title>arXiv.org</title><description>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</description><subject>Data processing</subject><subject>Encryption</subject><subject>Sensors</subject><subject>Viability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAURoMgOOZ-gG8Bn1uTmya5fZRZdTBRWX0eaXorHVujSTv28x3q0_dwOOdj7EaKvECtxZ2Lp_6Yy1KYXFhh4YLNQCmZYQFwxRYp7YQQYCxorWbs_SP1wyev45RGanl1Ij-NfRh4NRz7GIYDDWPiXYh8cyaR-GaM5A78LQZP6dcNHX-htvduzx_c6K7ZZef2iRb_O2f1Y1Uvn7P169Nqeb_OnAbMDBSFFBoNNAV1BCAtoGyUctJ0jTfSewTR6pYkgqHOImlEFBZb3xhq1Jzd_mW_YvieKI3bXZjicH7cAhSgS1UKVD9CsVB3</recordid><startdate>20190617</startdate><enddate>20190617</enddate><creator>Segarra, Carlos</creator><creator>Delgado-Gonzalo, Ricard</creator><creator>Lemay, Mathieu</creator><creator>Pierre-Louis Aublin</creator><creator>Pietzuch, Peter</creator><creator>Schiavoni, Valerio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190617</creationdate><title>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</title><author>Segarra, Carlos ; Delgado-Gonzalo, Ricard ; Lemay, Mathieu ; Pierre-Louis Aublin ; Pietzuch, Peter ; Schiavoni, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data processing</topic><topic>Encryption</topic><topic>Sensors</topic><topic>Viability</topic><toplevel>online_resources</toplevel><creatorcontrib>Segarra, Carlos</creatorcontrib><creatorcontrib>Delgado-Gonzalo, Ricard</creatorcontrib><creatorcontrib>Lemay, Mathieu</creatorcontrib><creatorcontrib>Pierre-Louis Aublin</creatorcontrib><creatorcontrib>Pietzuch, Peter</creatorcontrib><creatorcontrib>Schiavoni, Valerio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segarra, Carlos</au><au>Delgado-Gonzalo, Ricard</au><au>Lemay, Mathieu</au><au>Pierre-Louis Aublin</au><au>Pietzuch, Peter</au><au>Schiavoni, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Trusted Execution Environments for Secure Stream Processing of Medical Data</atitle><jtitle>arXiv.org</jtitle><date>2019-06-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Processing sensitive data, such as those produced by body sensors, on third-party untrusted clouds is particularly challenging without compromising the privacy of the users generating it. Typically, these sensors generate large quantities of continuous data in a streaming fashion. Such vast amount of data must be processed efficiently and securely, even under strong adversarial models. The recent introduction in the mass-market of consumer-grade processors with Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to implement solutions that overcome less flexible approaches, such as those atop homomorphic encryption. We present a secure streaming processing system built on top of Intel SGX to showcase the viability of this approach with a system specifically fitted for medical data. We design and fully implement a prototype system that we evaluate with several realistic datasets. Our experimental results show that the proposed system achieves modest overhead compared to vanilla Spark while offering additional protection guarantees under powerful attackers and threat models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.07072</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2242593908 |
source | Publicly Available Content Database |
subjects | Data processing Encryption Sensors Viability |
title | Using Trusted Execution Environments for Secure Stream Processing of Medical Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Trusted%20Execution%20Environments%20for%20Secure%20Stream%20Processing%20of%20Medical%20Data&rft.jtitle=arXiv.org&rft.au=Segarra,%20Carlos&rft.date=2019-06-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.07072&rft_dat=%3Cproquest%3E2242593908%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-6244105862b4efe2217281b33a16fbc61cc820d5de1826ef78e5888078dcb6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242593908&rft_id=info:pmid/&rfr_iscdi=true |