Loading…

Discrete calculus with cubic cells on discrete manifolds

This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Author: De Carlo, Leonardo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator De Carlo, Leonardo
description This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2242594002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242594002</sourcerecordid><originalsourceid>FETCH-proquest_journals_22425940023</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3CLguxJdE69oPHsB9ia8ppsRE8xK8vl3o3tUsZmBmrAIpN02rABasJhqFELDdgdayYu3RESabLUfjsfhC_O3ynWO5OeRovSceA-9_1cMEN0Tf04rNB-PJ1l8u2fp8uh4uzTPFV7GUuzGWFCbVASjQezVd5X_VB1cLNio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242594002</pqid></control><display><type>article</type><title>Discrete calculus with cubic cells on discrete manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>De Carlo, Leonardo</creator><creatorcontrib>De Carlo, Leonardo</creatorcontrib><description>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds ; Toruses</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2242594002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>De Carlo, Leonardo</creatorcontrib><title>Discrete calculus with cubic cells on discrete manifolds</title><title>arXiv.org</title><description>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</description><subject>Manifolds</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3CLguxJdE69oPHsB9ia8ppsRE8xK8vl3o3tUsZmBmrAIpN02rABasJhqFELDdgdayYu3RESabLUfjsfhC_O3ynWO5OeRovSceA-9_1cMEN0Tf04rNB-PJ1l8u2fp8uh4uzTPFV7GUuzGWFCbVASjQezVd5X_VB1cLNio</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>De Carlo, Leonardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240122</creationdate><title>Discrete calculus with cubic cells on discrete manifolds</title><author>De Carlo, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22425940023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Manifolds</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>De Carlo, Leonardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Carlo, Leonardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discrete calculus with cubic cells on discrete manifolds</atitle><jtitle>arXiv.org</jtitle><date>2024-01-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2242594002
source Publicly Available Content (ProQuest)
subjects Manifolds
Toruses
title Discrete calculus with cubic cells on discrete manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discrete%20calculus%20with%20cubic%20cells%20on%20discrete%20manifolds&rft.jtitle=arXiv.org&rft.au=De%20Carlo,%20Leonardo&rft.date=2024-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2242594002%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22425940023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242594002&rft_id=info:pmid/&rfr_iscdi=true