Loading…
Discrete calculus with cubic cells on discrete manifolds
This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | De Carlo, Leonardo |
description | This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2242594002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242594002</sourcerecordid><originalsourceid>FETCH-proquest_journals_22425940023</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3CLguxJdE69oPHsB9ia8ppsRE8xK8vl3o3tUsZmBmrAIpN02rABasJhqFELDdgdayYu3RESabLUfjsfhC_O3ynWO5OeRovSceA-9_1cMEN0Tf04rNB-PJ1l8u2fp8uh4uzTPFV7GUuzGWFCbVASjQezVd5X_VB1cLNio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242594002</pqid></control><display><type>article</type><title>Discrete calculus with cubic cells on discrete manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>De Carlo, Leonardo</creator><creatorcontrib>De Carlo, Leonardo</creatorcontrib><description>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds ; Toruses</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2242594002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>De Carlo, Leonardo</creatorcontrib><title>Discrete calculus with cubic cells on discrete manifolds</title><title>arXiv.org</title><description>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</description><subject>Manifolds</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3CLguxJdE69oPHsB9ia8ppsRE8xK8vl3o3tUsZmBmrAIpN02rABasJhqFELDdgdayYu3RESabLUfjsfhC_O3ynWO5OeRovSceA-9_1cMEN0Tf04rNB-PJ1l8u2fp8uh4uzTPFV7GUuzGWFCbVASjQezVd5X_VB1cLNio</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>De Carlo, Leonardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240122</creationdate><title>Discrete calculus with cubic cells on discrete manifolds</title><author>De Carlo, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22425940023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Manifolds</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>De Carlo, Leonardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Carlo, Leonardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discrete calculus with cubic cells on discrete manifolds</atitle><jtitle>arXiv.org</jtitle><date>2024-01-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done on the discrete torus, where usual Gauss and Stokes theorems are recovered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2242594002 |
source | Publicly Available Content (ProQuest) |
subjects | Manifolds Toruses |
title | Discrete calculus with cubic cells on discrete manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discrete%20calculus%20with%20cubic%20cells%20on%20discrete%20manifolds&rft.jtitle=arXiv.org&rft.au=De%20Carlo,%20Leonardo&rft.date=2024-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2242594002%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22425940023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242594002&rft_id=info:pmid/&rfr_iscdi=true |