Loading…
A comprehensive SPH model for three-dimensional multiphase interface simulation
•A comprehensive multiphase SPH model is proposed.•A modified viscous term is incorporated into an improved boundary model.•Multiphase cases are tested to demonstrate the correctness of the model. Smoothed particle hydrodynamics is a typical Lagrangian meshless method, which has unique advantages in...
Saved in:
Published in: | Computers & fluids 2019-06, Vol.187, p.98-106 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443 |
container_end_page | 106 |
container_issue | |
container_start_page | 98 |
container_title | Computers & fluids |
container_volume | 187 |
creator | Yang, Qianhong Yao, Jun Huang, Zhaoqin Asif, Mehmood |
description | •A comprehensive multiphase SPH model is proposed.•A modified viscous term is incorporated into an improved boundary model.•Multiphase cases are tested to demonstrate the correctness of the model.
Smoothed particle hydrodynamics is a typical Lagrangian meshless method, which has unique advantages in modelling multiphase phenomena with interface deformation and fragmentation. Current study proposes a comprehensive multiphase SPH model, which takes the advantages of some numerical techniques such as numerical interfacial force and damping technique. An improved boundary model is also introduced to deal with the solid walls. Additionally, the multiphase phenomena are investigated by solving an enhanced continuous surface force (CSF) model. In order to verify the proposed model, the droplet in shear flow is firstly considered and the results are consistent with the analytical solutions. Furthermore, the oscillations of square droplets are simulated under different particle resolutions, density and viscosity ratios. Finally, two and three dimensional bubble rising at high density ratios (up to 1000) are tested. |
doi_str_mv | 10.1016/j.compfluid.2019.04.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242780776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793019300982</els_id><sourcerecordid>2242780776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-Bgs-t04ubdLHZVFXWFhBfQ5pOmVTejNpF_z3tqz46tMwM-ccZj5C7ikkFGj2WCe2b4eqmVyZMKB5AiIBoBdkRZXMY5BCXpIVgEhjmXO4Jjch1DD3nIkVOWyixe7xiF1wJ4ze33ZR25fYRFXvo_HoEePStcu270wTtVMzuuFoAkauG9FXxmIU3Dw246y4JVeVaQLe_dY1-Xx--tju4v3h5XW72ceWCz7GijPGKReS8yynQgFTAApUjkVKi0oYxlOkpSgwU6Ioc-SWA8srkzJRKCH4mjyccwfff00YRl33k58PDJoxwaQCKbNZJc8q6_sQPFZ68K41_ltT0As9Xes_enqhp0Homd7s3JydOD9xcuh1sA47i6XzaEdd9u7fjB-xAnv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242780776</pqid></control><display><type>article</type><title>A comprehensive SPH model for three-dimensional multiphase interface simulation</title><source>ScienceDirect Freedom Collection</source><creator>Yang, Qianhong ; Yao, Jun ; Huang, Zhaoqin ; Asif, Mehmood</creator><creatorcontrib>Yang, Qianhong ; Yao, Jun ; Huang, Zhaoqin ; Asif, Mehmood</creatorcontrib><description>•A comprehensive multiphase SPH model is proposed.•A modified viscous term is incorporated into an improved boundary model.•Multiphase cases are tested to demonstrate the correctness of the model.
Smoothed particle hydrodynamics is a typical Lagrangian meshless method, which has unique advantages in modelling multiphase phenomena with interface deformation and fragmentation. Current study proposes a comprehensive multiphase SPH model, which takes the advantages of some numerical techniques such as numerical interfacial force and damping technique. An improved boundary model is also introduced to deal with the solid walls. Additionally, the multiphase phenomena are investigated by solving an enhanced continuous surface force (CSF) model. In order to verify the proposed model, the droplet in shear flow is firstly considered and the results are consistent with the analytical solutions. Furthermore, the oscillations of square droplets are simulated under different particle resolutions, density and viscosity ratios. Finally, two and three dimensional bubble rising at high density ratios (up to 1000) are tested.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2019.04.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Continuous surface force model ; Damping ; Deformation ; Density ; Droplets ; Exact solutions ; Finite element method ; Fluid flow ; High density ratio ; Mathematical models ; Meshless methods ; Multiphase ; Multiphase flow ; Shear flow ; Smooth particle hydrodynamics ; Smoothed particle hydrodynamics ; Three dimensional models</subject><ispartof>Computers & fluids, 2019-06, Vol.187, p.98-106</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443</citedby><cites>FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Qianhong</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Asif, Mehmood</creatorcontrib><title>A comprehensive SPH model for three-dimensional multiphase interface simulation</title><title>Computers & fluids</title><description>•A comprehensive multiphase SPH model is proposed.•A modified viscous term is incorporated into an improved boundary model.•Multiphase cases are tested to demonstrate the correctness of the model.
Smoothed particle hydrodynamics is a typical Lagrangian meshless method, which has unique advantages in modelling multiphase phenomena with interface deformation and fragmentation. Current study proposes a comprehensive multiphase SPH model, which takes the advantages of some numerical techniques such as numerical interfacial force and damping technique. An improved boundary model is also introduced to deal with the solid walls. Additionally, the multiphase phenomena are investigated by solving an enhanced continuous surface force (CSF) model. In order to verify the proposed model, the droplet in shear flow is firstly considered and the results are consistent with the analytical solutions. Furthermore, the oscillations of square droplets are simulated under different particle resolutions, density and viscosity ratios. Finally, two and three dimensional bubble rising at high density ratios (up to 1000) are tested.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Continuous surface force model</subject><subject>Damping</subject><subject>Deformation</subject><subject>Density</subject><subject>Droplets</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>High density ratio</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Multiphase</subject><subject>Multiphase flow</subject><subject>Shear flow</subject><subject>Smooth particle hydrodynamics</subject><subject>Smoothed particle hydrodynamics</subject><subject>Three dimensional models</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-Bgs-t04ubdLHZVFXWFhBfQ5pOmVTejNpF_z3tqz46tMwM-ccZj5C7ikkFGj2WCe2b4eqmVyZMKB5AiIBoBdkRZXMY5BCXpIVgEhjmXO4Jjch1DD3nIkVOWyixe7xiF1wJ4ze33ZR25fYRFXvo_HoEePStcu270wTtVMzuuFoAkauG9FXxmIU3Dw246y4JVeVaQLe_dY1-Xx--tju4v3h5XW72ceWCz7GijPGKReS8yynQgFTAApUjkVKi0oYxlOkpSgwU6Ioc-SWA8srkzJRKCH4mjyccwfff00YRl33k58PDJoxwaQCKbNZJc8q6_sQPFZ68K41_ltT0As9Xes_enqhp0Homd7s3JydOD9xcuh1sA47i6XzaEdd9u7fjB-xAnv2</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Yang, Qianhong</creator><creator>Yao, Jun</creator><creator>Huang, Zhaoqin</creator><creator>Asif, Mehmood</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190615</creationdate><title>A comprehensive SPH model for three-dimensional multiphase interface simulation</title><author>Yang, Qianhong ; Yao, Jun ; Huang, Zhaoqin ; Asif, Mehmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Continuous surface force model</topic><topic>Damping</topic><topic>Deformation</topic><topic>Density</topic><topic>Droplets</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>High density ratio</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Multiphase</topic><topic>Multiphase flow</topic><topic>Shear flow</topic><topic>Smooth particle hydrodynamics</topic><topic>Smoothed particle hydrodynamics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qianhong</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Asif, Mehmood</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qianhong</au><au>Yao, Jun</au><au>Huang, Zhaoqin</au><au>Asif, Mehmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive SPH model for three-dimensional multiphase interface simulation</atitle><jtitle>Computers & fluids</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>187</volume><spage>98</spage><epage>106</epage><pages>98-106</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•A comprehensive multiphase SPH model is proposed.•A modified viscous term is incorporated into an improved boundary model.•Multiphase cases are tested to demonstrate the correctness of the model.
Smoothed particle hydrodynamics is a typical Lagrangian meshless method, which has unique advantages in modelling multiphase phenomena with interface deformation and fragmentation. Current study proposes a comprehensive multiphase SPH model, which takes the advantages of some numerical techniques such as numerical interfacial force and damping technique. An improved boundary model is also introduced to deal with the solid walls. Additionally, the multiphase phenomena are investigated by solving an enhanced continuous surface force (CSF) model. In order to verify the proposed model, the droplet in shear flow is firstly considered and the results are consistent with the analytical solutions. Furthermore, the oscillations of square droplets are simulated under different particle resolutions, density and viscosity ratios. Finally, two and three dimensional bubble rising at high density ratios (up to 1000) are tested.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2019.04.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2019-06, Vol.187, p.98-106 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2242780776 |
source | ScienceDirect Freedom Collection |
subjects | Computational fluid dynamics Computer simulation Continuous surface force model Damping Deformation Density Droplets Exact solutions Finite element method Fluid flow High density ratio Mathematical models Meshless methods Multiphase Multiphase flow Shear flow Smooth particle hydrodynamics Smoothed particle hydrodynamics Three dimensional models |
title | A comprehensive SPH model for three-dimensional multiphase interface simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20SPH%20model%20for%20three-dimensional%20multiphase%20interface%20simulation&rft.jtitle=Computers%20&%20fluids&rft.au=Yang,%20Qianhong&rft.date=2019-06-15&rft.volume=187&rft.spage=98&rft.epage=106&rft.pages=98-106&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2019.04.001&rft_dat=%3Cproquest_cross%3E2242780776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-8322313473369148028008089eb51bf4a235e1d4be684bd9e3c3029fa524b8443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242780776&rft_id=info:pmid/&rfr_iscdi=true |