Loading…

Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene

To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component w...

Full description

Saved in:
Bibliographic Details
Published in:Cellular polymers 2019-05, Vol.38 (3-4), p.47-67
Main Authors: Tan, Xiao-Tian, Zhou, Ying-Guo, Zhou, Jing-Jing, Dong, Bin-Bin, Liu, Chun-Tai, Xu, Bai-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103
cites cdi_FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103
container_end_page 67
container_issue 3-4
container_start_page 47
container_title Cellular polymers
container_volume 38
creator Tan, Xiao-Tian
Zhou, Ying-Guo
Zhou, Jing-Jing
Dong, Bin-Bin
Liu, Chun-Tai
Xu, Bai-Ping
description To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component were first fabricated by melt extrusion followed by conventional injection molding with or without a blowing agent. The mechanical properties, thermal features, and rheological characterizations of these samples were studied using the tensile test, dynamic mechanical analyzer, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and torque rheometry. The results suggest that ABS is a suitable candidate to improve the foamability of PP. The effect of ABS and compatibilizer on the foamability of PP can be attributed to three possible mechanisms, that is, the weak interaction between phases that facilitates cell nucleation, the improved gas-melt viscosity that prevents the escape of gas, and the influence of crystallization behavior that helps to form a fine foaming structure.
doi_str_mv 10.1177/0262489319852331
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2242846547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653028526</galeid><sage_id>10.1177_0262489319852331</sage_id><sourcerecordid>A653028526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI7uXRZcV3Npc1kOw3iBATe6DmmazHRom5pkhO58B9_QJzGlgiC4OgfO_53_nB-AawRvEWLsDmKKCy4IErzEhKATsEAF4zkuMDoFi2mcT_NzcBHCAUJCMRELoDbWGh0zZzOl_di6vom-ac3Xx2d1jKpuTD_1IY4-dVk0fnDt2BmfuT6Le5NZp7qm32WV2av3xvlp0yQZvBvGNjGX4MyqNpirn7oEr_ebl_Vjvn1-eFqvtrkmBY8540wQLcqKclqiGhGutIKaKCisYBWqoEaaUENrVNMakwoRIizT2NQUUwTJEtzMe5Pz29GEKA_u6PtkKXEKgRe0LFhS3c6qnWqNbHrrok9GWtWma7TrjU3PyxUtCcQpSJoAOAPauxC8sXLwTaf8KBGUU_Lyb_IJyWckqJ35veJf_TcHMIV6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242846547</pqid></control><display><type>article</type><title>Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene</title><source>SAGE</source><creator>Tan, Xiao-Tian ; Zhou, Ying-Guo ; Zhou, Jing-Jing ; Dong, Bin-Bin ; Liu, Chun-Tai ; Xu, Bai-Ping</creator><creatorcontrib>Tan, Xiao-Tian ; Zhou, Ying-Guo ; Zhou, Jing-Jing ; Dong, Bin-Bin ; Liu, Chun-Tai ; Xu, Bai-Ping</creatorcontrib><description>To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component were first fabricated by melt extrusion followed by conventional injection molding with or without a blowing agent. The mechanical properties, thermal features, and rheological characterizations of these samples were studied using the tensile test, dynamic mechanical analyzer, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and torque rheometry. The results suggest that ABS is a suitable candidate to improve the foamability of PP. The effect of ABS and compatibilizer on the foamability of PP can be attributed to three possible mechanisms, that is, the weak interaction between phases that facilitates cell nucleation, the improved gas-melt viscosity that prevents the escape of gas, and the influence of crystallization behavior that helps to form a fine foaming structure.</description><identifier>ISSN: 0262-4893</identifier><identifier>EISSN: 1478-2421</identifier><identifier>DOI: 10.1177/0262489319852331</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>ABS resins ; Acrylonitrile-butadiene-styrene ; Authorship ; Blowing agents ; Butadiene ; Cellular structure ; Chemical properties ; Crystallization ; Decomposition ; Extrusion blow molding ; Extrusion molding ; Foaming ; Injection molding ; Mechanical properties ; Nanoparticles ; Nucleation ; Plastic foam ; Polyethylene ; Polymer blends ; Polypropylene ; Resins ; Rheological properties ; Rheometry ; Scanning electron microscopy ; Styrenes ; Tensile tests ; Terpolymers ; X-ray diffraction ; Zinc oxides</subject><ispartof>Cellular polymers, 2019-05, Vol.38 (3-4), p.47-67</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Sage Publications Ltd. (UK)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103</citedby><cites>FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103</cites><orcidid>0000-0002-8732-3624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Tan, Xiao-Tian</creatorcontrib><creatorcontrib>Zhou, Ying-Guo</creatorcontrib><creatorcontrib>Zhou, Jing-Jing</creatorcontrib><creatorcontrib>Dong, Bin-Bin</creatorcontrib><creatorcontrib>Liu, Chun-Tai</creatorcontrib><creatorcontrib>Xu, Bai-Ping</creatorcontrib><title>Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene</title><title>Cellular polymers</title><description>To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component were first fabricated by melt extrusion followed by conventional injection molding with or without a blowing agent. The mechanical properties, thermal features, and rheological characterizations of these samples were studied using the tensile test, dynamic mechanical analyzer, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and torque rheometry. The results suggest that ABS is a suitable candidate to improve the foamability of PP. The effect of ABS and compatibilizer on the foamability of PP can be attributed to three possible mechanisms, that is, the weak interaction between phases that facilitates cell nucleation, the improved gas-melt viscosity that prevents the escape of gas, and the influence of crystallization behavior that helps to form a fine foaming structure.</description><subject>ABS resins</subject><subject>Acrylonitrile-butadiene-styrene</subject><subject>Authorship</subject><subject>Blowing agents</subject><subject>Butadiene</subject><subject>Cellular structure</subject><subject>Chemical properties</subject><subject>Crystallization</subject><subject>Decomposition</subject><subject>Extrusion blow molding</subject><subject>Extrusion molding</subject><subject>Foaming</subject><subject>Injection molding</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Plastic foam</subject><subject>Polyethylene</subject><subject>Polymer blends</subject><subject>Polypropylene</subject><subject>Resins</subject><subject>Rheological properties</subject><subject>Rheometry</subject><subject>Scanning electron microscopy</subject><subject>Styrenes</subject><subject>Tensile tests</subject><subject>Terpolymers</subject><subject>X-ray diffraction</subject><subject>Zinc oxides</subject><issn>0262-4893</issn><issn>1478-2421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI7uXRZcV3Npc1kOw3iBATe6DmmazHRom5pkhO58B9_QJzGlgiC4OgfO_53_nB-AawRvEWLsDmKKCy4IErzEhKATsEAF4zkuMDoFi2mcT_NzcBHCAUJCMRELoDbWGh0zZzOl_di6vom-ac3Xx2d1jKpuTD_1IY4-dVk0fnDt2BmfuT6Le5NZp7qm32WV2av3xvlp0yQZvBvGNjGX4MyqNpirn7oEr_ebl_Vjvn1-eFqvtrkmBY8540wQLcqKclqiGhGutIKaKCisYBWqoEaaUENrVNMakwoRIizT2NQUUwTJEtzMe5Pz29GEKA_u6PtkKXEKgRe0LFhS3c6qnWqNbHrrok9GWtWma7TrjU3PyxUtCcQpSJoAOAPauxC8sXLwTaf8KBGUU_Lyb_IJyWckqJ35veJf_TcHMIV6</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Tan, Xiao-Tian</creator><creator>Zhou, Ying-Guo</creator><creator>Zhou, Jing-Jing</creator><creator>Dong, Bin-Bin</creator><creator>Liu, Chun-Tai</creator><creator>Xu, Bai-Ping</creator><general>SAGE Publications</general><general>Sage Publications Ltd. (UK)</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8732-3624</orcidid></search><sort><creationdate>201905</creationdate><title>Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene</title><author>Tan, Xiao-Tian ; Zhou, Ying-Guo ; Zhou, Jing-Jing ; Dong, Bin-Bin ; Liu, Chun-Tai ; Xu, Bai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ABS resins</topic><topic>Acrylonitrile-butadiene-styrene</topic><topic>Authorship</topic><topic>Blowing agents</topic><topic>Butadiene</topic><topic>Cellular structure</topic><topic>Chemical properties</topic><topic>Crystallization</topic><topic>Decomposition</topic><topic>Extrusion blow molding</topic><topic>Extrusion molding</topic><topic>Foaming</topic><topic>Injection molding</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Plastic foam</topic><topic>Polyethylene</topic><topic>Polymer blends</topic><topic>Polypropylene</topic><topic>Resins</topic><topic>Rheological properties</topic><topic>Rheometry</topic><topic>Scanning electron microscopy</topic><topic>Styrenes</topic><topic>Tensile tests</topic><topic>Terpolymers</topic><topic>X-ray diffraction</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xiao-Tian</creatorcontrib><creatorcontrib>Zhou, Ying-Guo</creatorcontrib><creatorcontrib>Zhou, Jing-Jing</creatorcontrib><creatorcontrib>Dong, Bin-Bin</creatorcontrib><creatorcontrib>Liu, Chun-Tai</creatorcontrib><creatorcontrib>Xu, Bai-Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Cellular polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xiao-Tian</au><au>Zhou, Ying-Guo</au><au>Zhou, Jing-Jing</au><au>Dong, Bin-Bin</au><au>Liu, Chun-Tai</au><au>Xu, Bai-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene</atitle><jtitle>Cellular polymers</jtitle><date>2019-05</date><risdate>2019</risdate><volume>38</volume><issue>3-4</issue><spage>47</spage><epage>67</epage><pages>47-67</pages><issn>0262-4893</issn><eissn>1478-2421</eissn><abstract>To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component were first fabricated by melt extrusion followed by conventional injection molding with or without a blowing agent. The mechanical properties, thermal features, and rheological characterizations of these samples were studied using the tensile test, dynamic mechanical analyzer, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and torque rheometry. The results suggest that ABS is a suitable candidate to improve the foamability of PP. The effect of ABS and compatibilizer on the foamability of PP can be attributed to three possible mechanisms, that is, the weak interaction between phases that facilitates cell nucleation, the improved gas-melt viscosity that prevents the escape of gas, and the influence of crystallization behavior that helps to form a fine foaming structure.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0262489319852331</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8732-3624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-4893
ispartof Cellular polymers, 2019-05, Vol.38 (3-4), p.47-67
issn 0262-4893
1478-2421
language eng
recordid cdi_proquest_journals_2242846547
source SAGE
subjects ABS resins
Acrylonitrile-butadiene-styrene
Authorship
Blowing agents
Butadiene
Cellular structure
Chemical properties
Crystallization
Decomposition
Extrusion blow molding
Extrusion molding
Foaming
Injection molding
Mechanical properties
Nanoparticles
Nucleation
Plastic foam
Polyethylene
Polymer blends
Polypropylene
Resins
Rheological properties
Rheometry
Scanning electron microscopy
Styrenes
Tensile tests
Terpolymers
X-ray diffraction
Zinc oxides
title Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acrylonitrile%E2%80%93butadiene%E2%80%93styrene%20terpolymer%20on%20the%20foaming%20behavior%20of%20polypropylene&rft.jtitle=Cellular%20polymers&rft.au=Tan,%20Xiao-Tian&rft.date=2019-05&rft.volume=38&rft.issue=3-4&rft.spage=47&rft.epage=67&rft.pages=47-67&rft.issn=0262-4893&rft.eissn=1478-2421&rft_id=info:doi/10.1177/0262489319852331&rft_dat=%3Cgale_proqu%3EA653028526%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-78793c95b68651d138aca0c3a09f97b1b0c1c36e6d1d6d23b1339f7c2ed626103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242846547&rft_id=info:pmid/&rft_galeid=A653028526&rft_sage_id=10.1177_0262489319852331&rfr_iscdi=true