Loading…

A Market-Based Framework for Multi-Resource Allocation in Fog Computing

Fog computing is transforming the network edge into an intelligent platform by bringing storage, computing, control, and networking functions closer to end users, things, and sensors. How to allocate multiple resource types (e.g., CPU, memory, bandwidth) of capacity-limited heterogeneous fog nodes t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2019-06, Vol.27 (3), p.1151-1164
Main Authors: Nguyen, Duong Tung, Le, Long Bao, Bhargava, Vijay K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93
cites cdi_FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93
container_end_page 1164
container_issue 3
container_start_page 1151
container_title IEEE/ACM transactions on networking
container_volume 27
creator Nguyen, Duong Tung
Le, Long Bao
Bhargava, Vijay K.
description Fog computing is transforming the network edge into an intelligent platform by bringing storage, computing, control, and networking functions closer to end users, things, and sensors. How to allocate multiple resource types (e.g., CPU, memory, bandwidth) of capacity-limited heterogeneous fog nodes to competing services with diverse requirements and preferences in a fair and efficient manner is a challenging task. To this end, we propose a novel market-based resource allocation framework in which the services act as buyers and fog resources act as divisible goods in the market. The proposed framework aims to compute a market equilibrium (ME) solution at which every service obtains its favorite resource bundle under the budget constraint, while the system achieves high resource utilization. This paper extends the general equilibrium literature by considering a practical case of satiated utility functions. In addition, we introduce the notions of non-wastefulness and frugality for equilibrium selection and rigorously demonstrate that all the non-wasteful and frugal ME are the optimal solutions to a convex program. Furthermore, the proposed equilibrium is shown to possess salient fairness properties, including envy-freeness, sharing-incentive, and proportionality. Another major contribution of this paper is to develop a privacy-preserving distributed algorithm, which is of independent interest, for computing an ME while allowing market participants to obfuscate their private information. Finally, extensive performance evaluation is conducted to verify our theoretical analyses.
doi_str_mv 10.1109/TNET.2019.2912077
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2243278865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8700615</ieee_id><sourcerecordid>2243278865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFftCvIxJAE9DE4LnplilZWLbY7sb4712C8TRzeN6ZNw9C95SMKCXmaf02W48YoWbEDGVEqQs0oELoggkpL_udSF5Iadg1usl5RwjlhMkBWkzwyqU9tMWzy7DB8-QO8B3THoeY8Kqr26r4gBy75AFP6jp611axwVWD53GLp_Fw7Nqq2d6iq-DqDHd_c4g-57P19KVYvi9ep5Nl4Znhbd9ABaOdBmP8phTaOToGFbwC4NJ5YZTmQhJelsIpEITIkhLHYaOJL0MwfIgez3ePKX51kFu767s1_UvL2JgzpbUUPUXPlE8x5wTBHlN1cOnHUmJPvuzJlz35sn---szDOVMBwD-vVd-BCv4LcfFmGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243278865</pqid></control><display><type>article</type><title>A Market-Based Framework for Multi-Resource Allocation in Fog Computing</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Nguyen, Duong Tung ; Le, Long Bao ; Bhargava, Vijay K.</creator><creatorcontrib>Nguyen, Duong Tung ; Le, Long Bao ; Bhargava, Vijay K.</creatorcontrib><description>Fog computing is transforming the network edge into an intelligent platform by bringing storage, computing, control, and networking functions closer to end users, things, and sensors. How to allocate multiple resource types (e.g., CPU, memory, bandwidth) of capacity-limited heterogeneous fog nodes to competing services with diverse requirements and preferences in a fair and efficient manner is a challenging task. To this end, we propose a novel market-based resource allocation framework in which the services act as buyers and fog resources act as divisible goods in the market. The proposed framework aims to compute a market equilibrium (ME) solution at which every service obtains its favorite resource bundle under the budget constraint, while the system achieves high resource utilization. This paper extends the general equilibrium literature by considering a practical case of satiated utility functions. In addition, we introduce the notions of non-wastefulness and frugality for equilibrium selection and rigorously demonstrate that all the non-wasteful and frugal ME are the optimal solutions to a convex program. Furthermore, the proposed equilibrium is shown to possess salient fairness properties, including envy-freeness, sharing-incentive, and proportionality. Another major contribution of this paper is to develop a privacy-preserving distributed algorithm, which is of independent interest, for computing an ME while allowing market participants to obfuscate their private information. Finally, extensive performance evaluation is conducted to verify our theoretical analyses.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2019.2912077</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cloud computing ; Companies ; Computational modeling ; Economic models ; Edge computing ; End users ; Equilibrium ; fog computing ; General equilibrium ; Germanium ; Markets ; multi-resource allocation ; Performance evaluation ; privacy-preserving distributed optimization ; Resource allocation ; Resource management ; Sensors</subject><ispartof>IEEE/ACM transactions on networking, 2019-06, Vol.27 (3), p.1151-1164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93</citedby><cites>FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93</cites><orcidid>0000-0002-6072-0558 ; 0000-0003-3577-6530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8700615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Nguyen, Duong Tung</creatorcontrib><creatorcontrib>Le, Long Bao</creatorcontrib><creatorcontrib>Bhargava, Vijay K.</creatorcontrib><title>A Market-Based Framework for Multi-Resource Allocation in Fog Computing</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Fog computing is transforming the network edge into an intelligent platform by bringing storage, computing, control, and networking functions closer to end users, things, and sensors. How to allocate multiple resource types (e.g., CPU, memory, bandwidth) of capacity-limited heterogeneous fog nodes to competing services with diverse requirements and preferences in a fair and efficient manner is a challenging task. To this end, we propose a novel market-based resource allocation framework in which the services act as buyers and fog resources act as divisible goods in the market. The proposed framework aims to compute a market equilibrium (ME) solution at which every service obtains its favorite resource bundle under the budget constraint, while the system achieves high resource utilization. This paper extends the general equilibrium literature by considering a practical case of satiated utility functions. In addition, we introduce the notions of non-wastefulness and frugality for equilibrium selection and rigorously demonstrate that all the non-wasteful and frugal ME are the optimal solutions to a convex program. Furthermore, the proposed equilibrium is shown to possess salient fairness properties, including envy-freeness, sharing-incentive, and proportionality. Another major contribution of this paper is to develop a privacy-preserving distributed algorithm, which is of independent interest, for computing an ME while allowing market participants to obfuscate their private information. Finally, extensive performance evaluation is conducted to verify our theoretical analyses.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Companies</subject><subject>Computational modeling</subject><subject>Economic models</subject><subject>Edge computing</subject><subject>End users</subject><subject>Equilibrium</subject><subject>fog computing</subject><subject>General equilibrium</subject><subject>Germanium</subject><subject>Markets</subject><subject>multi-resource allocation</subject><subject>Performance evaluation</subject><subject>privacy-preserving distributed optimization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Sensors</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFftCvIxJAE9DE4LnplilZWLbY7sb4712C8TRzeN6ZNw9C95SMKCXmaf02W48YoWbEDGVEqQs0oELoggkpL_udSF5Iadg1usl5RwjlhMkBWkzwyqU9tMWzy7DB8-QO8B3THoeY8Kqr26r4gBy75AFP6jp611axwVWD53GLp_Fw7Nqq2d6iq-DqDHd_c4g-57P19KVYvi9ep5Nl4Znhbd9ABaOdBmP8phTaOToGFbwC4NJ5YZTmQhJelsIpEITIkhLHYaOJL0MwfIgez3ePKX51kFu767s1_UvL2JgzpbUUPUXPlE8x5wTBHlN1cOnHUmJPvuzJlz35sn---szDOVMBwD-vVd-BCv4LcfFmGw</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Nguyen, Duong Tung</creator><creator>Le, Long Bao</creator><creator>Bhargava, Vijay K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6072-0558</orcidid><orcidid>https://orcid.org/0000-0003-3577-6530</orcidid></search><sort><creationdate>201906</creationdate><title>A Market-Based Framework for Multi-Resource Allocation in Fog Computing</title><author>Nguyen, Duong Tung ; Le, Long Bao ; Bhargava, Vijay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Companies</topic><topic>Computational modeling</topic><topic>Economic models</topic><topic>Edge computing</topic><topic>End users</topic><topic>Equilibrium</topic><topic>fog computing</topic><topic>General equilibrium</topic><topic>Germanium</topic><topic>Markets</topic><topic>multi-resource allocation</topic><topic>Performance evaluation</topic><topic>privacy-preserving distributed optimization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Duong Tung</creatorcontrib><creatorcontrib>Le, Long Bao</creatorcontrib><creatorcontrib>Bhargava, Vijay K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Duong Tung</au><au>Le, Long Bao</au><au>Bhargava, Vijay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Market-Based Framework for Multi-Resource Allocation in Fog Computing</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2019-06</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>1151</spage><epage>1164</epage><pages>1151-1164</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Fog computing is transforming the network edge into an intelligent platform by bringing storage, computing, control, and networking functions closer to end users, things, and sensors. How to allocate multiple resource types (e.g., CPU, memory, bandwidth) of capacity-limited heterogeneous fog nodes to competing services with diverse requirements and preferences in a fair and efficient manner is a challenging task. To this end, we propose a novel market-based resource allocation framework in which the services act as buyers and fog resources act as divisible goods in the market. The proposed framework aims to compute a market equilibrium (ME) solution at which every service obtains its favorite resource bundle under the budget constraint, while the system achieves high resource utilization. This paper extends the general equilibrium literature by considering a practical case of satiated utility functions. In addition, we introduce the notions of non-wastefulness and frugality for equilibrium selection and rigorously demonstrate that all the non-wasteful and frugal ME are the optimal solutions to a convex program. Furthermore, the proposed equilibrium is shown to possess salient fairness properties, including envy-freeness, sharing-incentive, and proportionality. Another major contribution of this paper is to develop a privacy-preserving distributed algorithm, which is of independent interest, for computing an ME while allowing market participants to obfuscate their private information. Finally, extensive performance evaluation is conducted to verify our theoretical analyses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2019.2912077</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6072-0558</orcidid><orcidid>https://orcid.org/0000-0003-3577-6530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2019-06, Vol.27 (3), p.1151-1164
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_journals_2243278865
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
Cloud computing
Companies
Computational modeling
Economic models
Edge computing
End users
Equilibrium
fog computing
General equilibrium
Germanium
Markets
multi-resource allocation
Performance evaluation
privacy-preserving distributed optimization
Resource allocation
Resource management
Sensors
title A Market-Based Framework for Multi-Resource Allocation in Fog Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Market-Based%20Framework%20for%20Multi-Resource%20Allocation%20in%20Fog%20Computing&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Nguyen,%20Duong%20Tung&rft.date=2019-06&rft.volume=27&rft.issue=3&rft.spage=1151&rft.epage=1164&rft.pages=1151-1164&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2019.2912077&rft_dat=%3Cproquest_ieee_%3E2243278865%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-667f98a8e99cdb58aa14e7fc7ee36ac597835603bb5a7e5006b10a3ed80cbff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2243278865&rft_id=info:pmid/&rft_ieee_id=8700615&rfr_iscdi=true