Loading…

Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example

The authors used logistic regression and classification trees to develop prediction models for fatal outcomes in meningococcal disease in a cohort of 829 children hospitalized for meningococcal disease during 1989-1990 in Rio de Janeiro. The area under the receiver operator characteristic (ROC) curv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of tropical pediatrics (1980) 1999-08, Vol.45 (4), p.248-251
Main Authors: Werneck, GL, de Carvalho, DM, Barroso, DE, Cook, EF, Walker, SM
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1928-272b1bbface9163d5c83e43f58c6bd8e4b82e4288b0d4bd9a724a6b31f9720613
cites
container_end_page 251
container_issue 4
container_start_page 248
container_title Journal of tropical pediatrics (1980)
container_volume 45
creator Werneck, GL
de Carvalho, DM
Barroso, DE
Cook, EF
Walker, SM
description The authors used logistic regression and classification trees to develop prediction models for fatal outcomes in meningococcal disease in a cohort of 829 children hospitalized for meningococcal disease during 1989-1990 in Rio de Janeiro. The area under the receiver operator characteristic (ROC) curve was 92 per cent for logistic regression and 88 per cent for classification trees. Logistic regression may be preferred when the main objective is to obtain explicit measures for statistical inference and measures of the force of the association between each variable and the outcome. However, estimation of the probability of dying for each patient involves manipulation of the logistic regression formula, which would not easily be done in an emergency room. Classification trees provided comparable discrimination between fatal and non-fatal outcomes, and yielded a graphical display of the results that is easier to understand and is straightforward to apply in clinical settings.
doi_str_mv 10.1093/tropej/45.4.248
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_224350611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>406779861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1928-272b1bbface9163d5c83e43f58c6bd8e4b82e4288b0d4bd9a724a6b31f9720613</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnr8H7tvnabNabLVaFogiK4iVks7MldbtZky3ov_Anm1rxNId53nmHB6FzSiaUlHw6BN_DeiryiZgwoQ7QiAqZZ1xKcYhGhAqWSc7VMTqJcU0IYUqIEfqeBQcNDtD7MEzwvDUxusZZMzjf4SEARGy6Grd-5eLgbCJXARKTtqbvWwc1Hjzug191_heIw7Z2EC-xwdZvehNcTOw2um6FN9Cl4a231rS4dhFMBGx2FRg-zaZv4RQdNaaNcPY3x-h5cf00v82WDzd386tlZmnJVMYKVtGqaoyFkkpe51ZxELzJlZVVrUBUioFgSlWkFlVdmoIJIytOm7JgRFI-Rhf7u-n1jy3EQa_9NnSpUjMmeJ6YHTTdQzb4GAM0ug9uY8KXpkTvrOu9dS1yLXSynhLZPpFswec_bsK7lgUvcn37-qbV4-yF3S9muuA_1XKJiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224350611</pqid></control><display><type>article</type><title>Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example</title><source>Oxford Journals Online</source><creator>Werneck, GL ; de Carvalho, DM ; Barroso, DE ; Cook, EF ; Walker, SM</creator><creatorcontrib>Werneck, GL ; de Carvalho, DM ; Barroso, DE ; Cook, EF ; Walker, SM</creatorcontrib><description>The authors used logistic regression and classification trees to develop prediction models for fatal outcomes in meningococcal disease in a cohort of 829 children hospitalized for meningococcal disease during 1989-1990 in Rio de Janeiro. The area under the receiver operator characteristic (ROC) curve was 92 per cent for logistic regression and 88 per cent for classification trees. Logistic regression may be preferred when the main objective is to obtain explicit measures for statistical inference and measures of the force of the association between each variable and the outcome. However, estimation of the probability of dying for each patient involves manipulation of the logistic regression formula, which would not easily be done in an emergency room. Classification trees provided comparable discrimination between fatal and non-fatal outcomes, and yielded a graphical display of the results that is easier to understand and is straightforward to apply in clinical settings.</description><identifier>ISSN: 0142-6338</identifier><identifier>EISSN: 1465-3664</identifier><identifier>DOI: 10.1093/tropej/45.4.248</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><ispartof>Journal of tropical pediatrics (1980), 1999-08, Vol.45 (4), p.248-251</ispartof><rights>Copyright Oxford University Press(England) Aug 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1928-272b1bbface9163d5c83e43f58c6bd8e4b82e4288b0d4bd9a724a6b31f9720613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Werneck, GL</creatorcontrib><creatorcontrib>de Carvalho, DM</creatorcontrib><creatorcontrib>Barroso, DE</creatorcontrib><creatorcontrib>Cook, EF</creatorcontrib><creatorcontrib>Walker, SM</creatorcontrib><title>Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example</title><title>Journal of tropical pediatrics (1980)</title><addtitle>J Trop Pediatr</addtitle><description>The authors used logistic regression and classification trees to develop prediction models for fatal outcomes in meningococcal disease in a cohort of 829 children hospitalized for meningococcal disease during 1989-1990 in Rio de Janeiro. The area under the receiver operator characteristic (ROC) curve was 92 per cent for logistic regression and 88 per cent for classification trees. Logistic regression may be preferred when the main objective is to obtain explicit measures for statistical inference and measures of the force of the association between each variable and the outcome. However, estimation of the probability of dying for each patient involves manipulation of the logistic regression formula, which would not easily be done in an emergency room. Classification trees provided comparable discrimination between fatal and non-fatal outcomes, and yielded a graphical display of the results that is easier to understand and is straightforward to apply in clinical settings.</description><issn>0142-6338</issn><issn>1465-3664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtnr8H7tvnabNabLVaFogiK4iVks7MldbtZky3ov_Anm1rxNId53nmHB6FzSiaUlHw6BN_DeiryiZgwoQ7QiAqZZ1xKcYhGhAqWSc7VMTqJcU0IYUqIEfqeBQcNDtD7MEzwvDUxusZZMzjf4SEARGy6Grd-5eLgbCJXARKTtqbvWwc1Hjzug191_heIw7Z2EC-xwdZvehNcTOw2um6FN9Cl4a231rS4dhFMBGx2FRg-zaZv4RQdNaaNcPY3x-h5cf00v82WDzd386tlZmnJVMYKVtGqaoyFkkpe51ZxELzJlZVVrUBUioFgSlWkFlVdmoIJIytOm7JgRFI-Rhf7u-n1jy3EQa_9NnSpUjMmeJ6YHTTdQzb4GAM0ug9uY8KXpkTvrOu9dS1yLXSynhLZPpFswec_bsK7lgUvcn37-qbV4-yF3S9muuA_1XKJiw</recordid><startdate>199908</startdate><enddate>199908</enddate><creator>Werneck, GL</creator><creator>de Carvalho, DM</creator><creator>Barroso, DE</creator><creator>Cook, EF</creator><creator>Walker, SM</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope></search><sort><creationdate>199908</creationdate><title>Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example</title><author>Werneck, GL ; de Carvalho, DM ; Barroso, DE ; Cook, EF ; Walker, SM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1928-272b1bbface9163d5c83e43f58c6bd8e4b82e4288b0d4bd9a724a6b31f9720613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werneck, GL</creatorcontrib><creatorcontrib>de Carvalho, DM</creatorcontrib><creatorcontrib>Barroso, DE</creatorcontrib><creatorcontrib>Cook, EF</creatorcontrib><creatorcontrib>Walker, SM</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of tropical pediatrics (1980)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werneck, GL</au><au>de Carvalho, DM</au><au>Barroso, DE</au><au>Cook, EF</au><au>Walker, SM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example</atitle><jtitle>Journal of tropical pediatrics (1980)</jtitle><addtitle>J Trop Pediatr</addtitle><date>1999-08</date><risdate>1999</risdate><volume>45</volume><issue>4</issue><spage>248</spage><epage>251</epage><pages>248-251</pages><issn>0142-6338</issn><eissn>1465-3664</eissn><abstract>The authors used logistic regression and classification trees to develop prediction models for fatal outcomes in meningococcal disease in a cohort of 829 children hospitalized for meningococcal disease during 1989-1990 in Rio de Janeiro. The area under the receiver operator characteristic (ROC) curve was 92 per cent for logistic regression and 88 per cent for classification trees. Logistic regression may be preferred when the main objective is to obtain explicit measures for statistical inference and measures of the force of the association between each variable and the outcome. However, estimation of the probability of dying for each patient involves manipulation of the logistic regression formula, which would not easily be done in an emergency room. Classification trees provided comparable discrimination between fatal and non-fatal outcomes, and yielded a graphical display of the results that is easier to understand and is straightforward to apply in clinical settings.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/tropej/45.4.248</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-6338
ispartof Journal of tropical pediatrics (1980), 1999-08, Vol.45 (4), p.248-251
issn 0142-6338
1465-3664
language eng
recordid cdi_proquest_journals_224350611
source Oxford Journals Online
title Brief report. Classification trees and logistic regression applied to prognostic studies: a comparison using meningococcal disease as an example
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brief%20report.%20Classification%20trees%20and%20logistic%20regression%20applied%20to%20prognostic%20studies:%20a%20comparison%20using%20meningococcal%20disease%20as%20an%20example&rft.jtitle=Journal%20of%20tropical%20pediatrics%20(1980)&rft.au=Werneck,%20GL&rft.date=1999-08&rft.volume=45&rft.issue=4&rft.spage=248&rft.epage=251&rft.pages=248-251&rft.issn=0142-6338&rft.eissn=1465-3664&rft_id=info:doi/10.1093/tropej/45.4.248&rft_dat=%3Cproquest_cross%3E406779861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1928-272b1bbface9163d5c83e43f58c6bd8e4b82e4288b0d4bd9a724a6b31f9720613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=224350611&rft_id=info:pmid/&rfr_iscdi=true