Loading…

Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”

Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2019-05, Vol.59 (5), p.775-781
Main Author: Mikhailov, G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73
cites cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73
container_end_page 781
container_issue 5
container_start_page 775
container_title Computational mathematics and mathematical physics
container_volume 59
creator Mikhailov, G. A.
description Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number of baseline trajectories are modeled for each medium realization. The optimal value of is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.
doi_str_mv 10.1134/S0965542519050117
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243602022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243602022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvMJDOzLMVHoUWw6nZIM0lNmZnUJLXoqh-iP9cvMaWCC3F17uU8uPcgdE7gkpA0u5pCyRnLKCMlMCAkP0A9whhLOOf0EPV2dLLjj9GJ9wsAwssi7aHnUbt09k21qgvYajxZNcHUJq7e2E40-EF0tW3Nh6rxxHZB4aFwjcWDZm6dCS-tx-sIeLv5nC4bE4Lp5tvN1yk60qLx6uwH--jp5vpxeJeM729Hw8E4kSnhIWGUc1nUlKRUxlEXBQcBeVkrCTTXnMpc6jLNhMpYrYAyzYlkBTA9y0Uxy9M-utjnxideV8qHamFXLt7tK0qzlAMFSqOK7FXSWe-d0tXSmVa494pAtauv-lNf9NC9x0dtN1fuN_l_0zckIHNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243602022</pqid></control><display><type>article</type><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><source>Springer Nature</source><creator>Mikhailov, G. A.</creator><creatorcontrib>Mikhailov, G. A.</creatorcontrib><description>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number of baseline trajectories are modeled for each medium realization. The optimal value of is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519050117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Kernels ; Mathematics ; Mathematics and Statistics ; Order parameters ; Probabilistic models ; Randomization ; Splitting ; Statistical analysis</subject><ispartof>Computational mathematics and mathematical physics, 2019-05, Vol.59 (5), p.775-781</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</citedby><cites>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikhailov, G. A.</creatorcontrib><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number of baseline trajectories are modeled for each medium realization. The optimal value of is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order parameters</subject><subject>Probabilistic models</subject><subject>Randomization</subject><subject>Splitting</subject><subject>Statistical analysis</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvMJDOzLMVHoUWw6nZIM0lNmZnUJLXoqh-iP9cvMaWCC3F17uU8uPcgdE7gkpA0u5pCyRnLKCMlMCAkP0A9whhLOOf0EPV2dLLjj9GJ9wsAwssi7aHnUbt09k21qgvYajxZNcHUJq7e2E40-EF0tW3Nh6rxxHZB4aFwjcWDZm6dCS-tx-sIeLv5nC4bE4Lp5tvN1yk60qLx6uwH--jp5vpxeJeM729Hw8E4kSnhIWGUc1nUlKRUxlEXBQcBeVkrCTTXnMpc6jLNhMpYrYAyzYlkBTA9y0Uxy9M-utjnxideV8qHamFXLt7tK0qzlAMFSqOK7FXSWe-d0tXSmVa494pAtauv-lNf9NC9x0dtN1fuN_l_0zckIHNi</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Mikhailov, G. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><author>Mikhailov, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order parameters</topic><topic>Probabilistic models</topic><topic>Randomization</topic><topic>Splitting</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailov, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailov, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>59</volume><issue>5</issue><spage>775</spage><epage>781</epage><pages>775-781</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number of baseline trajectories are modeled for each medium realization. The optimal value of is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519050117</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2019-05, Vol.59 (5), p.775-781
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2243602022
source Springer Nature
subjects Algorithms
Computational Mathematics and Numerical Analysis
Computer simulation
Kernels
Mathematics
Mathematics and Statistics
Order parameters
Probabilistic models
Randomization
Splitting
Statistical analysis
title Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Multidimensional%20Randomized%20Monte%20Carlo%20Algorithms%20with%20%E2%80%9CSplitting%E2%80%9D&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Mikhailov,%20G.%20A.&rft.date=2019-05-01&rft.volume=59&rft.issue=5&rft.spage=775&rft.epage=781&rft.pages=775-781&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519050117&rft_dat=%3Cproquest_cross%3E2243602022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2243602022&rft_id=info:pmid/&rfr_iscdi=true