Loading…
Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”
Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional...
Saved in:
Published in: | Computational mathematics and mathematical physics 2019-05, Vol.59 (5), p.775-781 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73 |
container_end_page | 781 |
container_issue | 5 |
container_start_page | 775 |
container_title | Computational mathematics and mathematical physics |
container_volume | 59 |
creator | Mikhailov, G. A. |
description | Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number
of baseline trajectories are modeled for each medium realization. The optimal value of
is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations. |
doi_str_mv | 10.1134/S0965542519050117 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243602022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243602022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvMJDOzLMVHoUWw6nZIM0lNmZnUJLXoqh-iP9cvMaWCC3F17uU8uPcgdE7gkpA0u5pCyRnLKCMlMCAkP0A9whhLOOf0EPV2dLLjj9GJ9wsAwssi7aHnUbt09k21qgvYajxZNcHUJq7e2E40-EF0tW3Nh6rxxHZB4aFwjcWDZm6dCS-tx-sIeLv5nC4bE4Lp5tvN1yk60qLx6uwH--jp5vpxeJeM729Hw8E4kSnhIWGUc1nUlKRUxlEXBQcBeVkrCTTXnMpc6jLNhMpYrYAyzYlkBTA9y0Uxy9M-utjnxideV8qHamFXLt7tK0qzlAMFSqOK7FXSWe-d0tXSmVa494pAtauv-lNf9NC9x0dtN1fuN_l_0zckIHNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243602022</pqid></control><display><type>article</type><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><source>Springer Nature</source><creator>Mikhailov, G. A.</creator><creatorcontrib>Mikhailov, G. A.</creatorcontrib><description>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number
of baseline trajectories are modeled for each medium realization. The optimal value of
is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519050117</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Kernels ; Mathematics ; Mathematics and Statistics ; Order parameters ; Probabilistic models ; Randomization ; Splitting ; Statistical analysis</subject><ispartof>Computational mathematics and mathematical physics, 2019-05, Vol.59 (5), p.775-781</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</citedby><cites>FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikhailov, G. A.</creatorcontrib><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number
of baseline trajectories are modeled for each medium realization. The optimal value of
is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order parameters</subject><subject>Probabilistic models</subject><subject>Randomization</subject><subject>Splitting</subject><subject>Statistical analysis</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvMJDOzLMVHoUWw6nZIM0lNmZnUJLXoqh-iP9cvMaWCC3F17uU8uPcgdE7gkpA0u5pCyRnLKCMlMCAkP0A9whhLOOf0EPV2dLLjj9GJ9wsAwssi7aHnUbt09k21qgvYajxZNcHUJq7e2E40-EF0tW3Nh6rxxHZB4aFwjcWDZm6dCS-tx-sIeLv5nC4bE4Lp5tvN1yk60qLx6uwH--jp5vpxeJeM729Hw8E4kSnhIWGUc1nUlKRUxlEXBQcBeVkrCTTXnMpc6jLNhMpYrYAyzYlkBTA9y0Uxy9M-utjnxideV8qHamFXLt7tK0qzlAMFSqOK7FXSWe-d0tXSmVa494pAtauv-lNf9NC9x0dtN1fuN_l_0zckIHNi</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Mikhailov, G. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</title><author>Mikhailov, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order parameters</topic><topic>Probabilistic models</topic><topic>Randomization</topic><topic>Splitting</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailov, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailov, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>59</volume><issue>5</issue><spage>775</spage><epage>781</epage><pages>775-781</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number
of baseline trajectories are modeled for each medium realization. The optimal value of
is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519050117</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2019-05, Vol.59 (5), p.775-781 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2243602022 |
source | Springer Nature |
subjects | Algorithms Computational Mathematics and Numerical Analysis Computer simulation Kernels Mathematics Mathematics and Statistics Order parameters Probabilistic models Randomization Splitting Statistical analysis |
title | Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting” |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Multidimensional%20Randomized%20Monte%20Carlo%20Algorithms%20with%20%E2%80%9CSplitting%E2%80%9D&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Mikhailov,%20G.%20A.&rft.date=2019-05-01&rft.volume=59&rft.issue=5&rft.spage=775&rft.epage=781&rft.pages=775-781&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519050117&rft_dat=%3Cproquest_cross%3E2243602022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-5266c8d2132c266f8860a079dec027f62c7cf934ae45de025f61c5805fb7a8b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2243602022&rft_id=info:pmid/&rfr_iscdi=true |