Loading…
A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame
A numerical model was constructed by Fluent software in this study with the objective to evaluate the model performance of predicting impinging flame heat transfer. The mechanism of methane-air-2step provided by the software and a Chemkin-compatible mechanism are used. With other conditions unchange...
Saved in:
Published in: | Fuel (Guildford) 2019-09, Vol.251, p.730-738 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3 |
container_end_page | 738 |
container_issue | |
container_start_page | 730 |
container_title | Fuel (Guildford) |
container_volume | 251 |
creator | Zhen, H.S. Zhang, L. Wei, Z.L. Chen, Z.B. Huang, Z.H. |
description | A numerical model was constructed by Fluent software in this study with the objective to evaluate the model performance of predicting impinging flame heat transfer. The mechanism of methane-air-2step provided by the software and a Chemkin-compatible mechanism are used. With other conditions unchanged, the flame and heat transfer characteristics of the flame were computed and compared.
Both mechanisms over predicted the height and maximum temperature of the flame by referring to the experimental data. The highest temperatures were found in small hot spots which are found to influence the impingement heat transfer at large nozzle-plate distance. Overall, the Chemkin mechanism gives a more reasonable temperature field and better predicts flame height and flame structure due to the more species and reactions considered.
Both mechanisms can follow the experimental heat flux variation. The Chemkin mechanism better predicts heat transfer quantitatively, while the Fluent mechanism may be preferred by engineers for a qualitative analysis with lower computational cost. |
doi_str_mv | 10.1016/j.fuel.2019.04.077 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244151127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119306325</els_id><sourcerecordid>2244151127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz61Jm49d8LIufsGCl_Uc0nTiprTpmqSC_96U9SwMDAzvO_POg9AtJSUlVNx3pZ2gLytC1yVhJZHyDC3oStaFpLw-RwuSVUVVC3qJrmLsCCFyxdkCfWywnwYIzugexzS1P3i0OB0AH0AnnIL20UKYh9pjNxyd_8yFwzj5tugg4QHSQXvAj5OP4LHt9QDX6MLqPsLNX1-i_fPTfvta7N5f3rabXWFqwVPRMEEk561pBQgrbG0YawwAA9GsW1aDllxqTqwklJkVVJrDuuH5I6Ml2HqJ7k5rj2H8miAm1Y1T8PmiqirGKKe0kllVnVQmjDEGsOoY3KDDj6JEzfRUp2Z6aqanCFOZXjY9nEyQ4387CCoaB95A6wKYpNrR_Wf_BRT-eRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244151127</pqid></control><display><type>article</type><title>A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame</title><source>ScienceDirect Journals</source><creator>Zhen, H.S. ; Zhang, L. ; Wei, Z.L. ; Chen, Z.B. ; Huang, Z.H.</creator><creatorcontrib>Zhen, H.S. ; Zhang, L. ; Wei, Z.L. ; Chen, Z.B. ; Huang, Z.H.</creatorcontrib><description>A numerical model was constructed by Fluent software in this study with the objective to evaluate the model performance of predicting impinging flame heat transfer. The mechanism of methane-air-2step provided by the software and a Chemkin-compatible mechanism are used. With other conditions unchanged, the flame and heat transfer characteristics of the flame were computed and compared.
Both mechanisms over predicted the height and maximum temperature of the flame by referring to the experimental data. The highest temperatures were found in small hot spots which are found to influence the impingement heat transfer at large nozzle-plate distance. Overall, the Chemkin mechanism gives a more reasonable temperature field and better predicts flame height and flame structure due to the more species and reactions considered.
Both mechanisms can follow the experimental heat flux variation. The Chemkin mechanism better predicts heat transfer quantitatively, while the Fluent mechanism may be preferred by engineers for a qualitative analysis with lower computational cost.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.04.077</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>CFD ; Combustion modeling ; Computer applications ; Computer programs ; Cost analysis ; Flame impingement ; Flame structure ; Heat flux ; Heat transfer ; Impingement ; Mathematical models ; Methane ; Nozzles ; Performance prediction ; Plates (structural members) ; Qualitative analysis ; Software ; Temperature distribution</subject><ispartof>Fuel (Guildford), 2019-09, Vol.251, p.730-738</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3</citedby><cites>FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhen, H.S.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Wei, Z.L.</creatorcontrib><creatorcontrib>Chen, Z.B.</creatorcontrib><creatorcontrib>Huang, Z.H.</creatorcontrib><title>A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame</title><title>Fuel (Guildford)</title><description>A numerical model was constructed by Fluent software in this study with the objective to evaluate the model performance of predicting impinging flame heat transfer. The mechanism of methane-air-2step provided by the software and a Chemkin-compatible mechanism are used. With other conditions unchanged, the flame and heat transfer characteristics of the flame were computed and compared.
Both mechanisms over predicted the height and maximum temperature of the flame by referring to the experimental data. The highest temperatures were found in small hot spots which are found to influence the impingement heat transfer at large nozzle-plate distance. Overall, the Chemkin mechanism gives a more reasonable temperature field and better predicts flame height and flame structure due to the more species and reactions considered.
Both mechanisms can follow the experimental heat flux variation. The Chemkin mechanism better predicts heat transfer quantitatively, while the Fluent mechanism may be preferred by engineers for a qualitative analysis with lower computational cost.</description><subject>CFD</subject><subject>Combustion modeling</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Cost analysis</subject><subject>Flame impingement</subject><subject>Flame structure</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Impingement</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Nozzles</subject><subject>Performance prediction</subject><subject>Plates (structural members)</subject><subject>Qualitative analysis</subject><subject>Software</subject><subject>Temperature distribution</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz61Jm49d8LIufsGCl_Uc0nTiprTpmqSC_96U9SwMDAzvO_POg9AtJSUlVNx3pZ2gLytC1yVhJZHyDC3oStaFpLw-RwuSVUVVC3qJrmLsCCFyxdkCfWywnwYIzugexzS1P3i0OB0AH0AnnIL20UKYh9pjNxyd_8yFwzj5tugg4QHSQXvAj5OP4LHt9QDX6MLqPsLNX1-i_fPTfvta7N5f3rabXWFqwVPRMEEk561pBQgrbG0YawwAA9GsW1aDllxqTqwklJkVVJrDuuH5I6Ml2HqJ7k5rj2H8miAm1Y1T8PmiqirGKKe0kllVnVQmjDEGsOoY3KDDj6JEzfRUp2Z6aqanCFOZXjY9nEyQ4387CCoaB95A6wKYpNrR_Wf_BRT-eRo</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhen, H.S.</creator><creator>Zhang, L.</creator><creator>Wei, Z.L.</creator><creator>Chen, Z.B.</creator><creator>Huang, Z.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190901</creationdate><title>A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame</title><author>Zhen, H.S. ; Zhang, L. ; Wei, Z.L. ; Chen, Z.B. ; Huang, Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CFD</topic><topic>Combustion modeling</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Cost analysis</topic><topic>Flame impingement</topic><topic>Flame structure</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Impingement</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Nozzles</topic><topic>Performance prediction</topic><topic>Plates (structural members)</topic><topic>Qualitative analysis</topic><topic>Software</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen, H.S.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Wei, Z.L.</creatorcontrib><creatorcontrib>Chen, Z.B.</creatorcontrib><creatorcontrib>Huang, Z.H.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen, H.S.</au><au>Zhang, L.</au><au>Wei, Z.L.</au><au>Chen, Z.B.</au><au>Huang, Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>251</volume><spage>730</spage><epage>738</epage><pages>730-738</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>A numerical model was constructed by Fluent software in this study with the objective to evaluate the model performance of predicting impinging flame heat transfer. The mechanism of methane-air-2step provided by the software and a Chemkin-compatible mechanism are used. With other conditions unchanged, the flame and heat transfer characteristics of the flame were computed and compared.
Both mechanisms over predicted the height and maximum temperature of the flame by referring to the experimental data. The highest temperatures were found in small hot spots which are found to influence the impingement heat transfer at large nozzle-plate distance. Overall, the Chemkin mechanism gives a more reasonable temperature field and better predicts flame height and flame structure due to the more species and reactions considered.
Both mechanisms can follow the experimental heat flux variation. The Chemkin mechanism better predicts heat transfer quantitatively, while the Fluent mechanism may be preferred by engineers for a qualitative analysis with lower computational cost.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.04.077</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-09, Vol.251, p.730-738 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2244151127 |
source | ScienceDirect Journals |
subjects | CFD Combustion modeling Computer applications Computer programs Cost analysis Flame impingement Flame structure Heat flux Heat transfer Impingement Mathematical models Methane Nozzles Performance prediction Plates (structural members) Qualitative analysis Software Temperature distribution |
title | A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20the%20heat%20transfer%20of%20an%20impinging%20round-jet%20methane%20Bunsen%20flame&rft.jtitle=Fuel%20(Guildford)&rft.au=Zhen,%20H.S.&rft.date=2019-09-01&rft.volume=251&rft.spage=730&rft.epage=738&rft.pages=730-738&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.04.077&rft_dat=%3Cproquest_cross%3E2244151127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-b460755dcd6e6f6f3c44bcee4e6b9d43ea757a50f7014c8e2a5e9b5153ca7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244151127&rft_id=info:pmid/&rfr_iscdi=true |